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We construct for the first time a flavor model, based on the smallest discrete symmetry �ð27Þ that
implements spontaneous CP violation with a complex phase of geometric origin, which can actually

reproduce all quark masses and mixing data. We show that its scalar sector has exotic properties that can

be tested at the LHC.
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In this Letter we present for the first time a viable flavor
model of fermion masses and mixing that is able to account
for all currently observed data, where we have employed
the smallest group �ð27Þ in which CP violation of geo-
metrical origin arises spontaneously during electroweak
symmetry breaking through a unique complex vacuum
expectation value (VEV). We require the Lagrangian to
be invariant under the standard model (SM) gauge group, a
discrete non-Abelian symmetry, and CP, which necessi-
tates the introduction of additional scalars. We show that
the extended scalar sector in this model contains novel
phenomenology testable at the LHC.

The origin ofCP violation is currently an open question in
particle physics. In the SM, CP is broken due to complex
Yukawa couplings and CP violation manifests itself in
charged weak interactions through the Cabibbo-Kobayashi-
Maskawa (CKM)matrix. Going beyond the SM it is possible
to explore the origin of CP violation, and breaking CP
spontaneously is particularly appealing [1,2]. In the frame-
work of spontaneousCP violation,CP is a symmetry of the
Lagrangian and therefore its parameters are real. CP viola-
tion can then arise from complex VEVs of the Higgs mul-
tiplets, provided the unitary transformation, U, given by

hHii ! hHii� ¼ UijhHji; (1)

acting on the Hi and relating the VEV to its complex
conjugate, is not a symmetry of the Lagrangian. If it is,
then CP is conserved even though the VEVs are complex.

In this Letter, the calculable phase arising from geomet-
rical CP violation (GCPV) is uniquely determined inde-
pendently of the arbitrary parameters of the scalar
potential. GCPV requires at least three Higgs doublets
and a non-Abelian symmetry [3]. �ð27Þ is known to be
the smallest group for producing geometrical phases. In
Ref. [4] this was generalized to larger groups obtaining the
same calculable phases. Recently, several new phase solu-
tions were advanced and expressed in terms of the number
of scalars and the group [5].

So far, viable models of fermion masses and mixing
within the GCPV framework have not been constructed,

although promising leading order structures have been
proposed [4]. It has also been shown that the calculability
of phases is robust and survives when the potential includes
nonrenormalizable terms [6]. Motivated by these previous
works, we attempt here to produce for the first time the
minimal model of GCPV which can fit all data. For this
purpose we base ourselves on a�ð27Þ symmetry, a discrete
subgroup of SU(3) and the smallest group that leads to
GCPV, and we add only the minimal amount of additional
matter.
We assume, without any loss of generality, that the three

Higgs doublets, Hi, transform as a �ð27Þ triplet with an
assignment of a 301 irreducible representation (irrep) with a
lower index. Their Hermitian conjugates Hyi transform as
the conjugate representation 302 with an upper index, con-
stituting the anti-triplet. We now clarify our notation and
illustrate some group properties. We denote the two rele-
vant generators of the group as c (cyclic permutation) and
d (diagonal phases). They operate as cðH1; H2; H3Þ !
ðH2; H3; H1Þ, cðHy1; Hy2; Hy3Þ ! ðHy2; Hy3; Hy1Þ, and
dðH1; H2; H3Þ ! ðH1; !H2; !

2H3Þ, dðHy1; Hy2; Hy3Þ !
ðHy1; !2Hy2; !Hy3Þ, where ! � ei2�=3. There are nine
distinct singlet irreps 1ij, where the subscript {ijg denotes
how they transform under the generators c1ij ¼ !i1ij,

d1ij ¼ !j1ij. More details about �ð27Þ can be found in

Refs. [7,8].
It was shown in Ref. [3] that the renormalizable scalar

potential in the �ð27Þ context can lead to a complex VEV
of the type:

hHii ¼ vð!; 1; 1Þ; (2)

that necessarily violates CP, as the corresponding U [see
Eq. (1)] is not a symmetry of the potential. We will revisit
the scalar potential in greater detail later, but now it is
important to focus on the Yukawa interactions.
We start with the quarks and recall the results of Ref. [4].

In order to make invariant Yukawa terms some of the
quarks must transform as triplet or anti-triplet under
�ð27Þ [3]. We write the invariants symbolically as QHid

c

and QHyiuc (without explicit SU(2) indices), with Q the
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left-handed quark doublets and uc, dc as the up and down
right-handed singlets. As described in Ref. [4], by choos-
ing Qi as a 301 we would necessarily require the dci to
transform also as a 301. Instead, if Q

i is a 302, the uci is
forced to be a 302. The end result is at least one sector has a
leading order Yukawa structure given by the �ð27Þ invari-
ant 30i � 30i � 30i. With the VEV in Eq. (2), this structure
leads to a mass matrix with three degenerate quark masses.
We therefore conclude that Q cannot be assigned as a
triplet or an anti-triplet. We are thus forced to choose
instead uc and dc as �ð27Þ triplets yielding QHid

cj and
QHyiucj with Q as singlets. Both sectors have Yukawa

couplings arising as the �ð27Þ invariants 1ij � ð301 � 302Þ.
Although 301 � 302 results in 9 distinct singlets, the group
properties are such that any 301 � 302 ! 1ij with i � 0

explicitly involves powers of ! (complex), so these possi-
bilities are not allowed by CP invariance of the Lagrangian.
To generate a renormalizable Yukawa interaction we are then
restricted to assign Q1, Q2, and Q3 each as one or the other
of the three 10i singlets. The remaining possibilities are then
assigning all three Q in the same singlet irrep or assigning
two in the same, or all three Q in different irreps. All three
structures lead to mass matrices that have a special structure
distinguished by rows. The choice of Q as 100, 101, or 102
forces the respective Hid

cj or Hyiucj product to be 100, 102,
or 101 respectively, which essentially amounts to a shift in
the position of the ! in the mass matrix. More explicitly,
the corresponding down mass matrix looks like

~Md ¼ v

y1! y1 y1

y2 y2! y2

y3 y3 y3!

0
BB@

1
CCA (3)

and the associated up quark mass matrix looks very similar
(!2 instead of ! and the second and third rows swapped).
Conversely, if Q1, Q2, and Q3 are assigned to 100, 100, and
102, respectively, we get

Md ¼ v

y1! y1 y1

y2! y2 y2

y3 y3 y3!

0
BB@

1
CCA: (4)

We recall that due to the explicit CP invariance of the
Lagrangian, the Yukawa couplings are all real, and the
phase appears only through the complex VEV. At this point
it is instructive to show the hermitian matrices MMy

~Md
~My
d ¼ 3v2

y21 0 0

0 y22 0

0 0 y23

0
BB@

1
CCA: (5)

Vanishing off-diagonal entries follow from 1þ!þ
!2 ¼ 0.

Finally, for Md we have

MdM
y
d ¼ 3v2

y21 y1y2 0

y1y2 y22 0

0 0 y23

0
BB@

1
CCA: (6)

Note that the determinant of this structure is zero but it has
two nonvanishing masses. The last choice, all generations
of Q in the same singlet irrep leads to a rank 1 structure
with a single nonvanishing mass. Another relevant obser-
vation is that the complex phase is entirely absent in all
these Hermitian structures.
In order to obtain a viable CKMmatrix it is necessary to

generate additional off-diagonal terms. The minimal way
to do this is to add a gauge singlet scalar that is a nontrivial
�ð27Þ singlet, which we denote as �. Without any loss of
generality we place � in the irrep 101. This enables a new
nonrenormalizable Yukawa coefficient per row, associated
with terms of the typeQHid

cj�. ForQ1,Q2, andQ3 in 100,
100, and 102, respectively, we have to add to Md the
corresponding mass matrix:

M� ¼ v

y�1 y�1! y�1

y�2 y�2! y�2

y�3! y�3 y�3

0
BB@

1
CCA: (7)

From the interference MdM
y
� þM�M

y
d we obtain the

required off-diagonal entries whereas the effect of

M�M
y
� can be absorbed within the structure of MdM

y
d .

A complex phase in the CKM matrix requires that the
hermitian matrices of theMMy type are complex, which is
not the case up to now. To preserve the complex phase in
the hermitian matrices requires a further augmentation.
The minimal possibility is to consider the nonrenormaliz-
able interactions that contain higher powers of H e.g.,
QHid

cjðHkH
ylÞ. The only nontrivial structure that we

extract from the last nonrenormalizable combination is

MH ¼ v

yH1 yH1!
2 yH1!

2

yH2 yH2!
2 yH2!

2

yH3!
2 yH3!

2 yH3

0
BB@

1
CCA; (8)

where the identity 1þ!þ!2 ¼ 0 was used and the
existing coefficients were redefined to absorb similar

entries in the mass matrix. From the interferenceMdM
y
H þ

MHM
y
d we obtain the phases that enable complex CKM

elements, whereas bothM�M
y
H þMHM

y
� andMHM

y
H give

structures that do not qualitatively change the analysis. The
essential point is that the presence of MH is crucial to
generate the phase.
Note that M� and MH are the minimal mandatory addi-

tions that are necessary for a perfect fit to the existing data.
Following the above chain of arguments, we finally write
the relevant Lagrangian, explicitly showing the�ð27Þmul-
tiplet indices, as
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L ¼ QðHyiucj þHid
cj þHid

cj�þHid
cjðHkH

ylÞÞ: (9)

In fact, we found that the only choice that favorably accounts
for the precision flavor data is when Q1, Q2, and Q3 are
chosen as 100, 100, and 102 respectively. Concerning the up

quark sector, MuM
y
u can be considered to be diagonal, and

we need only one additional nonrenormalizable Yukawa
coupling in order to generate the small up quark mass. In
Fig. 1 we show that with this choice we can successfully
reproduce the Wolfenstein parameters from Ref. [9] (the
values we obtained are presented in the right column below):

�exp ¼ 0:22535� 0:00065 � ¼ 0:22534;

Aexp ¼ 0:811þ0:022
�0:012 A ¼ 0:810;

��exp ¼ 0:131þ0:026
�0:013 �� ¼ 0:129;

��exp ¼ 0:345þ0:013
�0:014 �� ¼ 0:344:

(10)

What about the leptons? This sector is experimentally less
constrained than the quark sector. The possible invariants
depend on what is responsible for the generation of neutrino
masses e.g., the type of seesaw mechanism, as discussed in
Ref. [10]. In addition to the structures that fit the quark
sector, other representation choices can also work in the
lepton sector. A leptonic model based on the 30i � 30i � 30i
invariants in �ð27Þ has been discussed in Ref. [11] (for the
A4 group see the detailed analysis in Ref. [12]).

We now turn our attention to the scalar potential which
contains the �ð27Þ triplet Hi as well as �. The full renor-
malizable potential is (recalling that all couplings are real):

VðH;�Þ¼m2
1½H1H

y
1 �þm2

2��yþm3ð�3þH:c:Þ
þ�1½ðH1H

y
1 Þ2�þ�2½H1H

y
1H2H

y
2 �

þ�3½H1H
y
2H1H

y
3 þH:c:�þ�4ð��yÞ2

þ�5½�ðH1H
y
2 ÞþH:c:�þ�6½��ðH1H

y
3 ÞþH:c:�;

(11)

where the square brackets represent also the cyclic permu-
tations on the �ð27Þ indices which we do not explicitly

show. The geometrical phase solution in Eq. (2) is not
affected by��y. When �5 and �6 are small, Eq. (2) holds,
and otherwise one can add a Z4 symmetry acting on � to
trivially enforce them to vanish [in this case Eq. (7) arises
from a �4 insertion instead of �, all conclusions remaining
unchanged]. For illustration we display only the CP-even
scalar components (in this class of models, one can sepa-
rately identify scalars and pseudoscalars [13]). Following the
minimization of the potential and determination of the mass
eigenvalues, we observed these features: (i) The � field is
much heavier (beyond 1 TeV) and decouples from the SU(2)
doublets. More specifically, the mass of � is determined by
�f4;5;6g, while those of hfa;b;cg are controlled by �f1;2;3g.
(ii) The physical scalars ha, hb and hc mix in a very specific
way as witnessed in Refs. [14–17] primarily in the S3
context. The scalar mass squared matrix has the structure

A B B

B C D

B D C

0
BB@

1
CCA; (12)

which leads to one physical scalar ha that is orthogonal to
the other scalars and has no haVV-type gauge couplings
(V ¼ W, Z). Its Yukawa couplings to up- and down-type
quarks are strongly suppressed, except that the hact and
hauc couplings are about 0.45. The other physical scalars,
hb and hc, have almost SM-like gauge and Yukawa
couplings.
Adjusting the scalar potential couplings, two viable

scenarios can be identified: (I) There is only one light
scalar, hb, that plays the role of the SM-like Higgs boson
found near 125 GeV. In this case all other scalars are
beyond the current exclusion range of the LHC. This
may be considered as a decoupling limit which reproduces
almost SM-like scalar structure. (II) A scenario which has
richer collider consequences emerges when the exotic
scalar ha is light enough to be produced (either through
hauc, or through top or heavy scalar decays) at the LHC.
Under the reasonable assumption that m� is greater than

1 TeVor so we can obtain the following analytic relations:

m2
ha

¼ 2

3
ð2�1v

2 � 2�2v
2 þ 3�3v

2Þ; (13)

m2
hc=b

¼ 1

6
ð5�1v

2 þ 4�2v
2 � ffiffiffi

3
p ½v4ð3�2

1 þ 8�1�2

� 16�1�3 þ 16�2
2 � 64�2�3 þ 64�2

3Þ�1=2Þ: (14)

It is possible to adjust the potential couplings �i to yield
mha around or perhaps slightly larger than the mass

125 GeV of the SM-like hb, with hc heavier than
600 GeV. In this case, a spectacular decay channel opens
through ha ! �aZ, fixing m�a

� 20 GeV, with subse-

quent decays of the pseudoscalar �a to charged leptons
of different flavors (e.g.,��) and of the Z boson to leptons;
see Fig. 2). There is enough freedom in the lepton sector to

FIG. 1. The experimental spread of the Wolfenstein parame-
ters �, A, ��, and �� around their central values [9]. Crosses denote
our model values.
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boost this �a coupling, which may generate a sizable
branching ratio in this channel; however, a more specific
prediction requires a detailed numerical study of the lepton
Yukawa sector which we do not delve into here.

In both scenarios (I) and (II) there are quite a few heavy
scalars above the current LHC limit of 650 GeVor so, but
their relative heaviness compared to the SMHiggs boson is
not a result of fine-tuning of parameters as for each heavy
state there exists a reasonably independent combination of
�i-type couplings which simply has to be set to a higher
value. We have verified this numerically. If the LHC bound
goes up, we have to accordingly increase the maximum
allowed value of some �i beyond�, and thus depending on
how far the experimental limit is pushed up, wewould have
to consider higher values of �i, e.g., up to maximum
allowed value of 2� to go over 1 TeV. Note that a prolif-
eration of scalar states below 1 TeV in both scenarios (I)
and (II), all coupling to SM gauge bosons, would affect
the energy dependence of longitudinal gauge boson scat-
tering. This energy dependence might be different from the
SM expectation due to the presence of the extra scalars,
whose quantitative impact may be probed at the high
luminosity option of the LHC depending on their masses
and couplings. A detailed analysis is beyond the scope of
this Letter.

In summary, we have for the first time reproduced the
CKM mixing matrix in a minimal �ð27Þ flavor model,
which is the smallest group where one can implement
spontaneous CP violation of geometrical origin. Since
quark mixing can be tested in several different independent
channels, to reproduce the CKM matrix in a minimal
scenario is often more difficult than fitting the lepton
mixing. Within the framework of a large class of discrete
symmetries it is usually difficult to exclude different
choices of representations from data. But our scenario is
quite falsifiable, in the sense that only two choices broadly

worked, out of which only one set of matter and Higgs
representations fits the ever growing precision of flavor
data. The scalar sector of the model inherits enough sym-
metries of the flavor group which induce exotic scalar
decays into multilepton of different flavors, constituting a
smoking gun signal of the model testable at the LHC.
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FIG. 2. Example of a decay mode of the exotic scalar ha that
can be tested at the LHC.
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