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The chameleon, or generalizations thereof, is a light scalar that couples to matter with gravitational

strength, but whose manifestation depends on the ambient matter density. A key feature is that the

screening mechanism suppressing its effects in high-density environments is determined by the local

scalar field value. Under very general conditions, we prove two theorems limiting its cosmological impact:

(i) the Compton wavelength of such a scalar can be at most ’ 1 MPc at the present cosmic density, which

restricts its impact to nonlinear scales; and (ii) the conformal factor relating Einstein- and Jordan-frame

scale factors is essentially constant over the last Hubble time, which precludes the possibility of self-

acceleration. These results imply that chameleonlike scalar fields have a negligible effect on the linear-

scale growth history; theories that invoke a chameleonlike scalar to explain cosmic acceleration rely on a

form of dark energy rather than a genuine modified gravity effect. Our analysis applies to a broad class of

chameleon, symmetron, and dilaton theories.
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The � cold dark matter (�CDM) standard model, fea-
turing a cosmological constant as the dark energy com-
ponent driving cosmic acceleration, will come under
increased scrutiny in this decade. Upcoming large-scale
surveys, such as the Dark Energy Survey, the Euclid mis-
sion, and the Large Synoptic Survey Telescope, will mea-
sure the expansion and growth histories of our universe
with unprecedented accuracy. These observations may
well reveal new physics beyond �CDM, in the form of
new dynamical degrees of freedom in the dark sector.

It is natural to expect that such degrees of freedom (gen-
erally scalar fields) couple to both dark matter [1,2] and
baryonic matter. Gravitationally (and universally) coupled
scalars are ubiquitous in string theory. To ensure consis-
tency with local tests of gravity, however, the effects of the
scalars must be suppressed locally. This is achieved through
screening mechanisms [3]: in high-density regions, such as
in the solar system, the scalars develop nonlinear interac-
tions, which in turn decouple them from matter.

Following are the two broad classes of screening
mechanisms:

(i) The chameleonlike mechanism, in which the scalar
interactions are governed by a potential Vð�Þ.
Whether an object is screened or not is determined
by the local value of the scalar field. This mechanism
is at play in chameleon [4–7], fðRÞ [8–10], symme-
tron [11–13], and dilaton theories [14]. These theo-
ries generally enjoy no particular symmetries; hence,
radiative corrections can be important [15]. On the
other hand, since chameleon screening does not rely
on derivative interactions, unlike the Vainshtein
mechanism described below, there is in principle no
obstruction to a UV completion in string theory [16].

(ii) The Vainshtein mechanism, in which the scalar
nonlinearities result from derivative interactions.
Whether an object is screened or not in this case is
determined by derivatives of the scalar field. This
mechanism is central to the Dvali-Gabadadze-
Porrati model [17] and massive gravity theories
[18], which involve a scalar with the Galileon sym-
metry [19]. Galileon interactions are not renormal-
ized at any order in perturbation theory [20–22]. On
the other hand, since Galileons generally propagate
superluminally on certain backgrounds, their UV
completion is not a local Lorentz-invariant quantum
field theory or perturbative string theory [23].
Another possibility is a shift, but not Galileon,
symmetric scalar [24].

In this paper we focus solely on chameleonlike theories.
We will prove, under very general conditions, two theo-
rems limiting the extent to which these theories can impact
cosmological observations. The theorems apply to a broad
class of these chameleon, symmetron, and dilaton theories.
The key input is demanding that the Milky Way galaxy, or
the Sun, be screened, which is a necessary condition to
satisfy local tests of gravity.
The first theorem is an upper bound on the chameleon

Compton wavelength at present cosmological density [25],

m�1
0 & Mpc: (1)

Since the chameleon force is Yukawa suppressed on scales
larger than m�1

0 , this implies that its effects on the large-

scale structure are restricted to nonlinear scales. Any
cosmological observable probing linear scales, such as
redshift-space distortions, should therefore see no devia-
tion from general relativity in these theories. While the
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bound (1) also appeared independently in Ref. [26], the
proof presented here follows a different approach.

The second theorem pertains to the possibility of self-
acceleration. Assuming that the scalar field couples uni-
versally to matter, the theories of interest therefore involve
two metrics, related by a conformal rescaling,

gJ�� ¼ A2ð�ÞgE��: (2)

The Jordan-frame metric gJ�� is the metric to which matter

fields couple minimally. The Einstein-frame metric gE�� is

by definition governed by the Einstein-Hilbert action, with
constant Planck mass. Although the two frames are physi-
cally equivalent, cosmological observations are implicitly
performed in the Jordan frame, where the masses of parti-
cles are constant. Meanwhile, the statement that we need
some form of dark energy (a component with an equation
of state P=� <�1=3) to drive cosmic acceleration is an
Einstein frame statement, where the Friedmann equation
takes its standard form.

By self-acceleration, we mean accelerated expansion in
the Jordan frame, while the Einstein-frame expansion rate
is not accelerating. This is a sensible definition, for the lack
of acceleration in the Einstein frame—where the Einstein,
and therefore the standard Friedmann, equations hold—is
equivalent to the lack of dark energy. In self-accelerating
theories, the observed (Jordan-frame) cosmic acceleration
stems entirely from the conformal transformation (2), i.e.,
a genuine modified gravity effect. The Galileon provides
such an example among its solutions, where the Einstein
frame metric is Minkowski and the Jordan frame metric is
de Sitter [19]. The well-known self-accelerating solution in
the Dvali-Gabadadze-Porrati model [17] can be interpreted
in such a manner.

Clearly a necessary condition for self-acceleration is that
the conformal factor Að�Þ varies by at least Oð1Þ over the
last Hubble time [27]. We will instead find for chameleon-
like theories

�A

A
� 1; (3)

ruling out the possibility of self-acceleration. Jordan- and
Einstein-frame metrics are indistinguishable, and cosmic
acceleration requires a negative-pressure component.

Taken together, (1) and (3) imply that chameleonlike
scalar fields have a negligible effect on density perturba-
tions on linear scales and cannot account for the observed
cosmic acceleration except as some form of dark energy.
This applies to a broad class of chameleon, symmetron, and
dilaton theories, including the popular example of fðRÞ.
In other words, any such model that purports to explain the
observed cosmic acceleration, and passes solar system
tests, must be doing so using some form of quintessence
or vacuum energy; the modification of gravity has nothing
to do with the acceleration phenomenon. Nonetheless, the
generalized chameleon mechanism remains interesting
as a way to hide light scalars suggested by fundamental

theories. The way to test these theories is to study small
scale phenomena. Astrophysically, chameleon scalars
affect the internal dynamics [28,29] and stellar evolution
[30–32] in dwarf galaxies in void or mildly overdense
regions.
Setup.—Consider a general scalar-tensor theory in the

Einstein frame,

S¼
Z
d4x

ffiffiffiffiffiffiffiffiffiffi
�gE

q �
RE

16�GN

�1

2
ð@�Þ2�Vð�Þ

�
þSm½gJ�: (4)

Matter fields described by Sm couple to � through the
conformal factor (positive) Að�Þ implicit in gJ��. The

acceleration of a test particle is influenced by the scalar

~a¼� ~r�N�dlnAð�Þ
d�

~r�¼� ~rð�Nþ lnAð�ÞÞ; (5)

where �N is the (Einstein frame) Newtonian potential.
The fields �N and � obey

~r2
�N ¼ 4�GNA�; h� ¼ V;� þ A;��; (6)

where the matter is assumed to be nonrelativistic, and � is
related to the Einstein- and Jordan-frame matter densities
by � ¼ �E=A ¼ A3�J; defined such that � is conserved in

the usual sense in the Einstein frame [33]. An alternative
form of the � equation of motion is useful for comparing
against the Poisson equation for �N,

h’ ¼ 8�GNðV;’ þ �A�Þ; � � d lnA

d’
¼ MPl

d lnA

d�
;

(7)

where ’ � �=MPl, MPl � ð8�GNÞ�1=2, and � quantifies
the dimensionless scalar-matter coupling, with ��Oð1Þ
meaning gravitational strength.
A scalar solution of interest is one where � takes the

equilibrium value, V;� þ A;�� ¼ 0; i.e., � varies suffi-

ciently slowly with space and time such that gradients of
� can be neglected. An example is cosmology, with the
cosmic mean � adiabatically tracking the minimum �min

of the effective potential Veffð�Þ � Vð�Þ þ Að�Þ� as the
universe evolves. For simplicity, we assume this minimum
is unique, within the field range of interest [34]. Further,
it is assumed �min varies monotonically with �, say,
d�min=d� � 0; this is useful for implementing the idea
that properties of the scalar field vary systematically with
the ambient density [35]. Differentiating V;� þ A;�� ¼ 0

with respect to �min, it is straightforward to show that
d�min=d� ¼ �A;�ð�minÞ=m2, where

m2�Veff;��ð�minÞ¼V;��ð�minÞþA;��ð�minÞ� (8)

is assumed non-negative for stability. This means A must
be monotonically increasing—hence V must be monotoni-
cally decreasing—with �, at least over the field range of
interest. A corollary is that Vð�minð�ÞÞ and Að�minð�ÞÞ are,
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respectively, monotonically increasing and decreasing
functions of �.

We are particularly interested in the equilibrium �min at
cosmic mean density between redshifts z ¼ 0 and z ’ 1,
the period during which the observed cosmic acceleration
commences. Let us refer to the respective equilibrium
values �z¼0 and �z’1. We are interested in theories with
interesting levels of modified gravity effects during this
period; we therefore assume

�ð�Þ * Oð1Þ for �z’1 � � � �z¼0: (9)

Note that our setup automatically guarantees �z’1 �
�z¼0. Hence, Að�Þ grows with time, which is a necessary
condition for self-acceleration.

Generalized screening condition.—Consider a spheri-
cally symmetric overdense object that is screened, mean-
ing it sources a scalar force that is everywhere suppressed
relative to the gravitational force. According to (5),

d lnAð�Þ
dr

&
d�N

dr
: (10)

Both sides of the inequality are positive. The positivity of
the right-hand side is guaranteed by the positivity of A�;
positivity of the left will be established below. Integrating
from inside to outside the object, we have

ln

�
Að�outÞ
Að�inÞ

�
& ��N: (11)

Here, ‘‘inside’’ means the origin r ¼ 0; ‘‘outside’’ means
sufficiently far out such that�out is the equilibrium value at
today’s cosmic mean density:�out ¼ �z¼0. To satisfy solar
system tests, we typically demand that the sun (and also the
Milky Way [36]) is screened. Both have a gravitational
potential �N ��10�6; thus, the screening condition is

ln

�
Að�z¼0Þ
Að�in-MWÞ

�
& 10�6: (12)

This inequality will be key in proving (1) and (3). It makes
clear that it is the gravitational potential of the object in
question, as opposed to its density alone, that ultimately
determines whether it is screened or not.

Proof of theorems.—We first rule out self-acceleration
by proving (3). To do so requires a closer examination of
the static and spherically symmetric equation of motion,

�00 þ 2

r
�0 ¼ V;� þ A;��; (13)

where 0 � d=dr. This is subject to the boundary conditions
�0jr¼0 ¼ 0 and �!r!1�z¼0. Although � tends to its
equilibrium value asymptotically, we make no such
assumption at the origin; i.e., �jr¼0 � �in need not
coincide with �minð�inÞ. We distinguish the following
three cases:

(i) Case 1: Suppose V;� þ A;�� ’ 0 at r ¼ 0, that is,

�in ’ �minð�inÞ. This is the thin-shell case of

standard chameleons [4]. Since �MW � �z’1, our
monotonicity assumptions imply Að�z’1Þ �
Að�in-MWÞ; thus,

ln

�
Að�z¼0Þ
Að�z’1Þ

�
� ln

�
Að�z¼0Þ
Að�in-MWÞ

�
& 10�6: (14)

This proves (3) in this case.
(ii) Case 2: Suppose A;�� � �V;� at r ¼ 0, which is

the case relevant to symmetrons [11]. Given our
assumption that Veff ¼ Vð�Þ þ Að�Þ� has a unique
minimum, this implies �in � �minð�inÞ. Because
�0jr¼0 ¼ 0, it follows from (13) that �00jr¼0 > 0,
and thus �0jr>0 > 0. And since �0 is continuous at
the surface of the object, to satisfy �!r!1�z¼0 we
must therefore have �in <�z¼0. In other words,
case 2 corresponds to

�minð�inÞ � �in <�z¼0: (15)

Unlike case 1, �in-MW is not a priori constrained to
be smaller (or greater) than�z’1. If�z’1 � �in-MW,
then as in case 1 we are led to (14), and self-
acceleration is ruled out. The other possibility,
�z’1 <�in-MW, is inconsistent with screening the
Milky Way. Indeed, in this case � falls within
the range (9), where �ð�Þ * Oð1Þ, and (7) can be
approximated by r2’� 8�GN�A�. Comparing
with the Poisson equation r2�N ¼ 4�GNA�, it is
clear the resulting scalar force is not small com-
pared to the gravitational force, thus invalidating the
screening of the Milky Way.

(iii) Case 3: Suppose A;�� � �V;� at r ¼ 0, that is,

�in � �minð�inÞ. In this case, all inequalities
are reversed relative to case 2, and instead of (15)
we conclude �minð�inÞ � �in >�z¼0. But this is
inconsistent with our assumption that �minð�Þ is
monotonically decreasing; hence, we can ignore
this case.

To summarize, the only phenomenologically viable pos-
sibilities are case 1 and case 2 with�z’1 � �in-MW. In both
cases we are led to (14). The very small �A=A over
cosmological time scales precludes self-acceleration.
To establish the bound (1) on m�1

0 , consider the

(Einstein-frame) cosmological evolution equation

€�þ 3H _� ¼ �V;� � A;��; (16)

where � is the total (dark matter plus baryonic) nonrelativ-
istic matter component, and H � _aE=aE is the Einstein-
frame Hubble parameter. Since Að�Þ��H2M2

Pl from the

Friedmann equation, the density term in (16) exerts a sig-
nificant pull on�ðtÞ. The potential prevents a rapid roll-off
of � by canceling the density term to good accuracy,
V;� ’ �A;��. This cancellation must be effective over at

least the Hubble time; i.e., � must track adiabatically the
minimum of the effective potential. Differentiating this
relation with respect to time, and using (8) together with
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the conservation law _� ¼ �3H� and the Friedmann
relation, we find

m2 ’ 3HA;��

_�
�H

dt

d lnA
�2ð�ÞH2: (17)

The factor of H�1d lnA=dt is the change of lnA over the
last Hubble time, which from (14) is less than 10�6. Thus,

m2 * 106�2ð�ÞH2: (18)

Using (9), it follows that m�1
0 & 10�3H�1

0 �Mpc, as we
wanted to show.

Discussion.—As with any no-go theorem, the key ques-
tion is which of its assumptions can be circumvented? One
option is to relax the assumption of adiabatic tracking for
the cosmological scalar field. While this opens up a wider
range of possibilities, a generic outcome is that � under-
goes large field excursions on cosmological time scales.
Indeed, if the two terms on the right-hand side of (16) do
not (approximately) cancel each other, the resulting accel-

eration j €�j �MPlH
2—either positive, if V dominates, or

negative, if A� dominates—will drive the field by an
amount j��j �MPlð�zÞ2 over a redshift difference �z.
In particular, j��j �MPl for �z ’ 1. It is unclear whether
such large field excursions are consistent with the
Milky Way being screened.

Another possibility is to relax the screening condition,
which assumes the existence of test particles moving on
Jordan-frame geodesics. If all astronomical objects used as
dynamical tracers are screened [7], then there is no need to
enforce (10). But this drastic measure to hide nearly all
modified gravity effects leads to a strong backreaction:
with even the smallest bodies being screened, the effective
density sourcing � cosmologically must be a tiny fraction
of the total matter density, and thus the cosmological
evolution needs to be reconsidered.

A further possibility is to relax the assumption of a
single scalar field. It is likely possible to extend our no—
self-acceleration theorem to a multifield version if V and A
continue to be monotonic functions of � at equilibrium.
It is unclear, however, how the mass bound would be
modified in a multifield context. Fluctuations around the
effective minimum would be described by a mass matrix,
whose eigenvalues can span a wide range of scales. We
leave a detailed investigation to future work.

Let us close with an observation on how theories that
screen by the Vainshtein mechanism circumvent our no-go
theorems: They replace the potential Vð�Þ by derivative
interactions. A key effect is that the screening condition
(10) needs only hold up to some radius, the so-called
Vainshtein radius, of the object, thus decoupling �out

from �z¼0. It would be interesting to investigate whether
chameleonlike theories can also achieve such decoupling.
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