
Fluids in Extreme Confinement

Thomas Franosch,1 Simon Lang,1 and Rolf Schilling2

1Institut für Theoretische Physik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 7, 91058 Erlangen, Germany
2Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, 55099 Mainz, Germany

(Received 24 August 2012; published 11 December 2012)

For extremely confined fluids with a two-dimensional density n in slit geometry of an accessible width

L, we prove that in the limit L ! 0, the lateral and transversal degrees of freedom decouple, and the latter

become ideal-gas-like. For a small wall separation, the transverse degrees of freedom can be integrated out

and renormalize the interaction potential. We identify nL2 as the hidden smallness parameter of the

confinement problem and evaluate the effective two-body potential analytically, which allows calculating

the leading correction to the free energy exactly. Explicitly, we map a fluid of hard spheres in extreme

confinement onto a 2D fluid of disks with an effective hard-core diameter and a soft boundary layer. Two-

dimensional phase transitions are robust and the transition point experiences a shift OðnL2Þ.
DOI: 10.1103/PhysRevLett.109.240601 PACS numbers: 05.20.Jj, 64.70.pv

Confined fluids are intermediate between fluids in three
and lower dimensions. The confinement strongly influen-
ces their physical behavior [1] like structural [2] and
dynamical [3] properties, and, in particular, the phase
behavior and phase transitions [4,5] or the glass transition
[6]. Therefore, confined fluids have attracted a lot of atten-
tion during the last three decades. One of the widely dis-
cussed features is the influence of the restricted geometry on
the critical behavior (see Refs. [4,7–10] and references
therein). For a colloid-polymer mixture in a slit geometry
with walls separated by five colloid diameters, the critical
exponents are already very close to those of the 2D liquid
[9]. Reduction of the spatial dimension from three to two
replaces in the Kosterlitz-Thouless-Halperin-Nelson-
Young theory [11,12] a first-order phase transition by a
two-stage continuous transition from a fluid to a hexatic
phase and then to a ‘‘solid’’ with long-range orientational,
but algebraically decaying translational order [2,12].

Most studies consider a slit geometry with two parallel,
hard plates separated by a distance Lþ � with a single
component fluid of either hard spheres with diameter � or
point particles (� ¼ 0). We will consider the case of
extremely confined fluids where only a monolayer fits
between the walls. Most investigations addressing this
regime used computer simulations (see Refs. [13–15] and
references therein), density functional theory (see
Refs. [16–19]), virial expansion, free volume theory, effec-
tive diameter theory [14], integral equations [20–23], and
experiments [24]. For instance, the density profile at the
center of a neutral hard-sphere fluid between two parallel
neutral hard walls (HSHW) has been calculated exactly for
L=� ! 0 [19,20]. How the 3D functional for the excess
free energy reduces to the corresponding 2D functional
was investigated for a HSHW for 0 � L � � in
Refs. [16,17]. The approximate analytical approach and
the computer simulations [13,14] as well as experiments
[25,26] of a HSHW reveal that the transition of the 2D

system from the fluid to the solid triangular phase and from
the latter to a buckling phase, a stable bilayer phase first
observed and theoretically explained in Refs. [25,27],
exists up to L=� ’ 0:6. For L=� * 0:6, new phases appear
which do not have an analogue in the ‘‘2D world.’’ That the
hexatic phase (not found in Refs. [13,14] probably because
the system is too small) exists for L=�LJ � 0:15 has been
shown recently for a Lennard-Jones (LJ) liquid of particles
with a ‘‘diameter’’ �LJ [15].
Intuitively it is obvious that a fluid confined between two

plates approaches a 2D fluid as L ! 0. But one of the
interesting questions is the following: How does such a
fluid converge to a 2D fluid if the effective distance L
becomes smaller and smaller? Or vice versa: If a 2D fluid,
e.g., undergoes an equilibrium phase transition, what is the
range of L such that the transversal degrees of freedom
(d.o.f.) do not affect the properties of that transition? To
study these questions is the main motivation of the present
work. Surprisingly, analytically exact results can be de-
rived, which is a rare situation for strongly interacting
many-particle systems. We will show that for L ! 0 the
lateral d.o.f. decouple from the transversal ones, where the
latter behave as an ideal gas in the external wall potential.
Additionally, we will calculate the exact leading order
correction due to their coupling. This allows us to deter-
mine the leading L dependence of thermodynamical
quantities.
We investigate a fluid ofN identical particles with lateral

and transversal d.o.f. ~xi ¼ ð~ri; ziÞ, i ¼ 1; 2; . . . ; N. The fluid
is confined between two plates at z ¼ �ðLþ �Þ=2 parallel
to the x-y plane, and the area of a plate is denoted by A. The
particles mutually interact via a pair potential only:

Vðf ~xigÞ ¼
X
i<j

V ðxijÞ; (1)

where we abbreviate xij :¼ j ~xi � ~xjj. To illustrate our

approach, we consider a pure hard-core repulsion with
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core diameter � and ignore additional particle-wall inter-
actions. A generalization to smooth pair and particle-wall
interactions is straightforward. As usual, the configura-
tional partition function reads Z ¼ Trðexp½��Vðf ~xigÞ�Þ
with the configurational integral Trð�Þ ¼ R½QN

i¼1 d
3xi�ð�Þ.

Then Fex ¼ �kBT lnðZ=VNÞ is the excess free energy [28]
with respect to a three-dimensional ideal gas of accessible
volume V ¼ AL.

Let us outline the strategy of our approach. First, it will
be shown that the configurational part �ðf ~xigÞ ¼
Z�1 exp½��Vðf ~xigÞ� of the canonical ensemble factorizes
for L ! 0 into a transversal and lateral distribution. In a
second step, a cluster expansion with respect to a 2D
reference fluid is developed, which allows us to eliminate
the transversal d.o.f. and to obtain an effective potential
Veffðf~rig;LÞ that adds to the bare potential of the reference
fluid. Third, we employ Veffðf~rig;LÞ to calculate the lead-
ing correction to the free energy.

The key observation is that by pure geometrical reasons
the lateral coordinates of two neighboring spheres cannot

come closer than �L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � L2

p
for small L, which fol-

lows directly from Pythagoras’ theorem. Hence, the
effective interaction after tracing out the transversal
degrees of freedom is concentrated on a thin shell of area
�ð�2��2

LÞ¼�L2 in addition to the bare two-dimensional
hard-core repulsion of diameter �L, to be denoted by
Wðf~rig;LÞ ¼ P

i<jW ðrij;LÞ. To avoid cumbersome nota-

tion, we mostly suppress the explicit dependence on L in
the following for the interaction potentials. Then the dis-
tribution function (as a measure) factorizes to leading order
�ðf ~xigÞ ¼ �?ðfzigÞ�kðf~rigÞ½1þOðL2Þ� into the distribution
function of the lateral and transversal d.o.f.. Here the
transversal distribution reduces to a one-dimensional
ideal gas �?ðfzigÞ ¼ 1=Z? and trivial partition function
Z? ¼ LN , whereas the lateral d.o.f. correspond to a two-
dimensional hard-disk fluid �kðf~rigÞ ¼ exp½��Wðf~rigÞ�=
Zk. In particular, the free energy simplifies to F ¼ Fid þ
Fk
ex þOðL2Þ where Fid is the three-dimension ideal gas

contribution due to the kinetic energy, and Fk
ex ¼

�kBT lnðZk=ANÞ is the excess free energy of a hard-disk

fluid of diameter �L.
Next, we elaborate the leading correction to the factorized

ensemble. Let us introduce the cluster functions fij �
fðrij; zi; zjÞ ¼�½r2ijþðzi� zjÞ2��2���ðr2ij��2

LÞ with

�ðxÞ the Heaviside function, and rij :¼ j~ri � ~rjj.
Note, �1 � fij � 0 and its support is restricted to

�L < rij < �. Then the identity exp½��Vðf ~xigÞ� ¼
exp½��Wðf~rigÞ�Qi<jð1þ fijÞ allows us to perform a clus-

ter expansion. Let us emphasize that the subsequent
procedure can be directly generalized to the case of addi-
tional smooth pair and particle-wall interactions or point
particles by a suitable choice of the reference potential
Wðf~rigÞ and cluster functions fij. For convenience we

abbreviate pairs i � j by � ¼ ðijÞ and enumerate them.

Then, we define the effective potential expð��VeffÞ ¼
hQ�ð1þ f�Þi? by averaging over the transversal d.o.f.
With x ¼ hQ�ð1þ f�Þi? � 1 and using the series expan-
sion lnð1þ xÞ ¼ P1

k¼1ð�1Þkþ1xk=k, one finds

� �Veff ¼
X
�

�
hf�i? � 1

2
ðhf�i?Þ2 þ � � �

�

þ X
�<�

½hf�f�i? � hf�i?hf�i?� þ � � � : (2)

The first line contains precisely the terms
ð�1Þkþ1

P
�½hf�i?�k=k and adds up to the exact effective

two-body potential V ð2Þ
eff ; the subsequent term contains the

first contribution to the three-body interaction:

Veff ¼ �kBT
X
�

lnð1þ hf�i?Þ þ
XN
k¼3

Oðk-clustersÞ: (3)

Note that successive cluster contributions are additive and

involve k-body interactions V ðkÞ
eff ; see Fig. 1 for an illus-

tration of the various clusters. Keeping only the 2-cluster
term is equivalent to the approximation hQ�ð1þ f�Þi? �Q

�ð1þ hf�i?Þ. For hard spheres hf�i? can be evaluated
explicitly,

FIG. 1. Illustration of the cluster expansion: The hard core
with diameter �L is shown in gray and the dashed circle with
diameter � marks the range above which the excluded volume
interactions vanish. 2D fluid of hard disks with diameter �L (a),
a 2-cluster (b), two irreducible 3-clusters and an irreducible
4-cluster (c) immersed in the hard-disk fluid.
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V ð2Þ
effðrij;LÞ ¼ �2kBT lnð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2 � r2ijÞ=L2

q
Þ; (4)

for �L � rij � � and zero otherwise. The total pair po-

tential V totalðrÞ ¼ W ðrÞ þV ð2Þ
effðrÞ, represented in Fig. 2,

smoothly interpolates between the hard-core repulsion of
disks with diameter�L and the force-free region for r > �.
The additional effective interaction diverges logarithmi-
cally for r # �L and approaches zero as a square rootffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�2 � r2Þ=L2
p

for r " �.
The effective potential can be used for the calculation of

ensemble averages. Consider an observable X ¼ Xðf~rigÞ
which depends only on the lateral coordinates. Then its
configurational average yields

1

Z
Tr½X expð��VÞ� ¼ Z?Zk

Z

�
X

�Y
�

ð1þ f�Þ
�
?

�
k

¼ e��FhXe��Veff ik; (5)

where�F :¼ F� Fid � Fk
ex ¼ �kBT lnhexpð��VeffÞik is

the shift of the free energy induced by the coupling between
transversal and lateral d.o.f., and h�ik indicates a configura-
tional average with respect to �k. Hence, the knowledge of
the effective potential allows calculating all structural quan-
tities of the lateral d.o.f. in the confined system. In particu-
lar, using the effective two-body potential yields averages
that are correct including to order OðnL2Þ.

The shift of the free energy �F can now be evaluated
explicitly to leading order. Since the support of fij is

concentrated to a tiny shell of width �L2, the corrections
with respect to the reference system become small and
induce a hierarchy of contributions of decreasing weight.
Then the average hexpð��VeffÞik, cf. Eq. (2), evaluates to a
power series in L2. Abbreviating y ¼ hhQ�ð1þ f�Þi?ik �
1, yields ���F ¼ P1

k¼1ð�1Þkþ1yk=k. Since y ¼ OðL2Þ,
we find for the leading correction of the free energy

���F ¼ X
�

hhf�i?ik þOðL4Þ: (6)

The leading correction arises from the effective pair po-

tential V ð2Þ
eff . In the thermodynamic limit one infers

�F=N¼�nkBT

2

Z
gðrÞ½e��V ð2Þ

eff
ðr;LÞ�1�d2rþOðnL2Þ2;

(7)

where gðrÞ is the radial pair distribution function of the
hard-disk reference fluid. Since the effective potential acts
only on the thin layer, gðrÞ can be replaced by its contact
value gð�þ

L Þ and the remaining integral can be performed
with the following result:

�F=N ¼ 5

12
�kBTnL

2gð�þÞ þOðnL2Þ2: (8)

The preceding relation uncovers the smallness parameter
nL2 of the confinement problem, which is one of our
principal results. Let us emphasize that this coincides
only formally with a virial low-density expansion; the
quality of our approximation does not arise due to a dilute
system, but rather by the strong confinement. The contact
value is connected to the excess surface tension �ex ¼
�ð@Fex=@AÞT;N of the two-dimensional reference system

via the virial equation �ex=nkBT ¼ �n�2
Lgð�þ

L Þ=2, simi-
lar to the three-dimensional case [28].
Let us discuss some consequences of these results. For

instance, the force per area exerted on the plates
pðT; L; n ¼ N=AÞ ¼ �A�1ð@F=@LÞT;A;N follows to

p ¼ nkBT

L

�
1� 5

6
�nL2gð�þÞ þOðnL2Þ2

�
; (9)

where the leading term is of purely entropic origin and
arises from the ideal gas term in the transversal direction.

The excess free energy Fk
ex of the reference hard-disk

system does not contribute and the coupling of the lateral
d.o.f. to the transversal ones is evaluated to leading order.
Similarly, the surface tension,

�

nkBT
¼ 1þ �n�2

L

2
gð�þ

L Þ þ
5�nL2

12
gð�þÞ þOðnL2Þ2;

(10)

consists of the corresponding surface tension of the refer-
ence hard-disk system and the corrections due to the cou-
pling. Since the effective diameter of the reference system
�L depends also on the plate distance, the correction due to
the shift of the hard-disk surface tension is of the same
order as the correction due to the coupling to the trans-
versal d.o.f.
As an application of our findings, assume that the refer-

ence 2D fluid undergoes a phase transition at a two-

dimensional packing fraction ’ð2DÞ
	 . As shown above, the

leading correction to the bare potential of the 2D reference
fluid is of the order L2. Consequently, for small L we

have ’ð2DÞ
	 ðLÞ ¼ ’ð2DÞ

	 ðL ¼ 0Þ½1þOðL2Þ�. Note that this

FIG. 2 (color online). The total two-body potential as function
of distance r. The gray region represents the excluded volume
region corresponding to the closest lateral distance �L two
spheres can assume in confinement.

PRL 109, 240601 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

14 DECEMBER 2012

240601-3



remains true if, besides the hard-core interactions, smooth
pair and particle-wall interactions are added as well, as for
point particles. The result for a HSHW [13,14] allows us to
quantify this behavior. The 3D and 2D packing fractions

are related by ’ð3DÞðLÞ ¼ ð2=3Þ’ð2DÞðLÞ=ð1þ L=�Þ. Then
the above discussion leads to

’ð3DÞ
	 ðLÞ ’ ’ð3DÞ

	 ðL ¼ 0Þ=ð1þ L=�Þ: (11)

Therefore, to leading order, the L dependence of the phase

transition line ’ð3DÞ
	 ðLÞ arises only from the trivial factor

1=ð1þ L=�Þ. The corrections are OðL2Þ and originate
again from the coupling of transversal to lateral d.o.f.
Figure 3 shows part of the phase diagram obtained in
Refs. [13,14] including our leading order result, Eq. (11)
(see Refs. [22,23] for a related figure). The figure demon-
strates that the freezing and melting line between fluid and
triangular phases are well described by our analytic pre-
diction up to L=� & 0:3. The freezing phase boundary
between triangular and buckling phases follows Eq. (11)
even up to L=� & 0:5. Since the buckling phase develops a
transversal structure with increasing L=�, our cluster ex-
pansion cannot be applied because macroscopic clusters
will be involved. The range of L=� for which the 2D
behavior dominates becomes even more evident using the
2D packing fraction (cf. the inset of Fig. 3). This inset
clearly demonstrates the shallow rise of the curvature of
the transition line with increasing L=� and their vanishing
slope at L ¼ 0, as predicted by our analytical result.
Additionally, the Monte Carlo (MC) data hint that the slope
of the melting line of the b phase is nonzero at L ¼ 0.

To summarize and conclude, we have proven that the
lateral and transversal d.o.f. of an extremely confined fluid
in slit geometry decouple if the effective width L becomes
much smaller than the average lateral particle distance

1=
ffiffiffi
n

p
. Since the transversal d.o.f. approach ideal gas

behavior for L ! 0, the nontrivial thermodynamic proper-
ties are completely determined by the corresponding 2D
fluid. The leading correction to the free energy due to the
residual coupling has been calculated exactly, thereby
identifying nL2 as a smallness parameter of the problem.
The phase behavior in extremely small slits is close to the
underlying 2D fluid and we conclude that phase transitions
are robust. Let us emphasize again that our approach is
valid for a densely packed strongly interacting system in
strong contrast to an ordinary virial expansion of a dilute
gas. Beyond thermodynamics, all structural properties can
be evaluated correctly in next-to-leading order in an effec-
tive two-dimensional ensemble where the two-body inter-
action consists of a hard-disk repulsion with reduced
diameter and a thin smooth repulsive layer. Because of
this mapping, a simulation of the hard-sphere fluid in
extreme confinement could be replaced by a simulation
of an effective 2D fluid. Similar conclusions apply for the
construction of functionals in density functional theory
(see Ref. [29]).
Phase transition lines are analytic in the vicinity of

L ¼ 0. Within the radius of convergence of our cluster
expansion, no phase transition can occur; however, it is
unclear if this radius, in general, signals a morphological
transition. In particular, the analytic property implies the
existence of a critical width Lc, in case the 2D fluid does
not exhibit a single first-order transition as found for a fluid
of hard disks [30,31] (see also the discussion in Ref. [33]).
The two transition lines emerging from both 2D transition
points have to join into a first-order line at Lc, independent
of whether the Kosterlitz-Thouless-Halperin-Nelson-
Young scenario or that of Ref. [32] holds. Whether Lc is
finite, as found for the 3-state Potts model [34], which has a
continuous transition in d ¼ 2 and a first-order transition in
d ¼ 3, is not yet obvious. Recent experiments for colloidal
films may support a finite critical thickness Lc [35].
Let us conclude by stating that it is straightforward to

include a smooth wall potential and a smooth part on top of
the hard-core repulsion. Then the reference ensemble still
factorizes, the transversal partition function being a prod-
uct of single-particle contributions. Correspondingly, the
force on the plates acquires an additional contribution from
the wall potential. Our framework can be applied also to
point particles with smooth interaction potentials and suit-
able wall potentials. Then the effective potential is propor-
tional to the mean-square displacement hð�zÞ2i? of the
transversal d.o.f. which is of the order L2 and the free
energy shift is again of the order nL2. In particular, from
our analysis one can design specific particle-wall interac-
tions minimizing hð�zÞ2i? to stabilize a two-dimensional
phase behavior, e.g., the hexatic phase investigated in
Ref. [15] for attractive walls.
The applicability of our approach and its results are

universal for any confined d-dimensional fluid where the

FIG. 3 (color online). Phase diagram of a HSHW taken from
Refs. [13,14]. Symbols represent the MC data points, the dashed
lines are guides for the eye, and the thin solid lines represent

’ð3DÞ
	 ðL ¼ 0Þ=’ð3DÞðLÞ � 1 from Eq. (11). 14 and b denote the

triangular and buckling phase. Inset: Phase transition lines ’ð2DÞ
as a function of L=�.
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effective width L of one of the spatial extensions converges
to zero. The corresponding d-dependent smallness parame-
ter is given by the dimensionless quantity nLd�1, where n
is now the number density of the d� 1-dimensional fluid.
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[5] H. Löwen, J. Phys. Condens. Matter 21, 474203

(2009).
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