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A three-component Fermi gas near a broad Feshbach resonance does not have a universal ground state

due to the Thomas collapse, while it does near a narrow Feshbach resonance. We explore its universal

phase diagram in the plane of the inverse scattering length 1=akF and the resonance range R�kF. For a
large R�kF, there exists a Lifshitz transition between superfluids with and without an unpaired Fermi

surface as a function of 1=akF. With decreasing R�kF, the Fermi surface coexisting with the superfluid can

change smoothly from that of atoms to trimers (‘‘atom-trimer continuity’’), corresponding to the quark-

hadron continuity in a dense nuclear matter. Eventually, there appears a finite window in 1=akF where the

superfluid is completely depleted by the trimer Fermi gas, which gives rise to a pair of quantum critical

points. The boundaries of these three quantum phases are determined in regions where controlled analyses

are possible and are also evaluated based on a mean-field plus trimer model.
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Introduction.—The physics of a dilute two-component
Fermi gas with a short-range interaction becomes universal
in the vicinity of a broad Feshbach resonance. In the limit
of the vanishing potential range r0 compared to the s-wave
scattering length a and the Fermi wavelength k�1

F ,
the physics is characterized solely by their dimensionless
ratio 1=akF. With increasing 1=akF, a two-component
Fermi gas exhibits a crossover from a Bardeen-Cooper-
Schrieffer- (BCS-)type superfluid to a Bose-Einstein
condensate (BEC) of diatomic molecules [1–3]. The
BCS-BEC crossover and its variations with mass and
density imbalances have been subject to extensive research
[4–7].

This research field can be further extended to multicom-
ponent Fermi gases. In particular, a three-component
Fermi gas has attracted considerable interest partially
because of its intriguing analogy to a matter of quarks
with three colors [8–10], and, more recently, because of
its experimental realization with 6Li atoms [11–17].
Superfluid pairing and the BCS-BEC ‘‘crossover’’ of a
three-component Fermi gas have been studied theoretically
[18–31], typically in mean-field approximations.

However, a serious problem arises when a many-body
ground state of a three-component Fermi gas is considered
beyond the mean-field approximation: Three distinguish-
able fermions can form an infinitely deep bound state in the
zero-range limit r0 ! 0, which is known as the Thomas
collapse [32]. Therefore, a three-component Fermi gas
does not have a many-body ground state, or even if it
exists, it is set by a nonzero r0 and hence not universal.
This is in sharp contrast to a two-component Fermi gas
where the Thomas collapse does not take place due to the
Pauli exclusion principle.

The lack of a universal ground state of a three-component
Fermi gas can be cured in the vicinity of a narrow Feshbach
resonance where both a and the resonance range R� are

much larger than r0 [33]. Because R� sets a ground state of
three fermions even in the zero-range limit r0 ! 0, a dilute
three-component Fermi gas now becomes universal in the
sense that its physics is completely characterized by the two
dimensionless ratios, 1=akF and R�kF. Recently, a two-
component Fermi gas near a narrow Feshbach resonance
was studied experimentally using 6Li atoms [34] or 6Li-40K
mixture [35] as well as theoretically [36–39]. Its extension
to three components of fermions is quite feasible.
Multicomponent Fermi gases can also be realized with
alkaline-earth-like atoms such as 173Yb [40].
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FIG. 1 (color online). Minimal phase structure of a three-
component Fermi gas with equal masses, densities, and inter-
actions at zero temperature. There are three quantum phases
consisting of superfluids (SF) with and without an unpaired
Fermi surface and a Fermi gas of trimers (Trimer FG). The
Fermi surface coexisting with the superfluid can change
smoothly from that of atoms (FSA) to trimers (FST). The phase
boundaries are asymptotically given by Eqs. (7) and (9) for
the superfluid transition (solid curve) and by Eqs. (4) and (10)
for the Lifshitz transition (dashed curve). See Fig. 2 for an
evaluation based on a mean-field plus trimer model.
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The purpose of this work is to explore the universal
phase diagram of a three-component Fermi gas in the
vicinity of a narrow Feshbach resonance. For simplicity,
we shall consider the case of equal masses, densities, and
interactions [10,41], and our findings are summarized in
Fig. 1. There are three regions in the plane of 1=akF and
R�kF where quantum phases are easily located: a BCS
superfluid with an unpaired Fermi surface in the weak
coupling limit 1=akF � �1, a BEC superfluid with no
unpaired Fermi surface in the strong coupling limit
1=akF � 1, and a Fermi gas of deeply bound three fermi-
ons (trimers) in the broad resonance limit R�kF � 1. In
what follows, their phase boundaries will be determined in
two regions where controlled analyses are possible: One is
the narrow resonance limit R�kF ! 1 with fixed 1=akF
(upper side of Fig. 1) and the other is the dilute limit
kF ! 0 with fixed R�=a (lower left and right corners).
A similar approach was used in Ref. [42] to investigate
the phase diagram of a bilayer Fermi gas. We also evaluate
the phase boundaries based on a mean-field plus trimer
model (see Fig. 2) and conclude that the minimal phase
structure is already rich, as shown in Fig. 1.

Narrow resonance limit.—A three-component Fermi gas
near a narrow Feshbach resonance with SUð3Þ � Uð1Þ
invariance is described by a Lagrangian density (hereafter,
@ ¼ 1):

L¼ c y
i

�
i@t þ r2

2m
þ�

�
c i þ�y

i

�
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� �þ 2�

�
�i
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�ijk
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i c jc k þ c y

k c
y
j �iÞ: (1)

Here c i and �i represent fermionic atoms and bosonic
molecules, respectively, �ijk is the antisymmetric tensor,

and sums over repeated indices i, j, k ¼ 1, 2, 3 are
assumed. The bare couplings � and g are related to the
s-wave scattering length and the resonance range by

�

g2
¼ � m

4�a
þ m�

2�2
and g2 ¼ 4�

m2R�
; (2)

where the momentum cutoff � should be sent to infinity.
A controlled analysis is possible in the narrow resonance
limit R� ! 1 where the Feshbach coupling g is vanish-
ingly small and thus the zero-temperature mean-field the-
ory becomes exact [43].

In order for all three components of fermions to have the
same number density ni � k3F=ð6�2Þ, three order parame-
ters h�ii have to be equal up to arbitrary phases. By

introducing a gap parameter � � ffiffiffi
3

p
gjh�iij, the grand

potential density is given by
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where �p � p2=ð2mÞ, Ep �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�p ��Þ2 þ �2

q
, and �ð�Þ is

the step function. The second term is a contribution of

unpaired fermions and the last one is that of paired fermi-
ons, both of which are superpositions of the original fer-
mion components jii. For example, the unpaired fermion
represented by a blue particle in Fig. 1 is an equal super-
position, junpairedi ¼ j1i þ j2i þ j3i. This uniform state
is energetically favored over the phase separation dis-
cussed in Refs. [28,44]. While the superfluid always exists
� � 0, the coexisting unpaired Fermi surface of atoms
appears only for �> 0 and disappears for �< 0.
Therefore, a Lifshitz transition takes place at � ¼ 0 [18].
By simultaneously solving the gap equation

@�MF=@� ¼ 0 and the number density equation 3ni ¼
�@�MF=@�, a location of the Lifshitz transition is found
to be

R�kF ¼ 210�

�ð1=4Þ8 ðakFÞ
4 � 4

3�
akF

��������akF>0
: (4)

This equation determines the asymptotic behavior of
the dashed curve in Fig. 1 toward the narrow resonance
limit R�kF ! 1. We remind the reader that the zero-
temperature mean-field theory (3) is correct only up to
the leading order of the systematic large R�kF expansion
[45]. Accordingly, the coefficient of the last term in Eq. (4)
should be modified by beyond-mean-field corrections.
The same Lifshitz transition has been observed at 1=akF ¼
0:633195 in the broad resonance limit R�kF ! 0
[20,28,30], but the mean-field analysis breaks down here.
Dilute limit.—A different controlled analysis is possible

in the dilute limit kF ! 0 where the problem reduces to a
few-body problem. In vacuum, two distinguishable fermi-
ons form a bound state (dimer) with binding energyE2 < 0:

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mjE2j

q
¼ �1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4R�=a
p
2R�

��������a>0
: (5)

On the other hand, a binding energy of three distinguishable
fermions is determined by three coupled integral equa-
tions [46]:
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¼ X
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p2 þ q2 þ p � qþmjE3j
: (6)

Two types of solutions are potentially allowed: One is
�1ðpÞ ¼ ��2ðpÞ with �3ðpÞ ¼ 0 where Eq. (6) becomes
equivalent to a problem of two-component fermions and
hence no bound state solution; the other is�ðpÞ � �iðpÞ for
all i ¼ 1, 2, 3 where Eq. (6) becomes equivalent to a
problem of three identical bosons [33,47]. A ground state
trimer with binding energy E3 < 0 is found in the s-wave
channel, �ðpÞ ¼ �ðjpjÞ [48]. While there is also an infinite
tower of excited states due to theEfimoveffect [49], they are
irrelevant to the present purpose to determine the many-
body ground state. We also note that bound states formed
with more than three fermions are unlikely due to the Pauli
exclusion principle.
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With increasing R�=a on the side of a < 0, the trimer
appears from the three-atom threshold at

E3 ¼ 0 , R�
a

¼ �0:0917249: (7)

On the left (right) side of this point, the dilute limit of a
three-component Fermi gas reduces to a system of atoms
(trimers). Because different components of fermions with
equal densities can form Cooper pairs by an infinitesimal
attraction, this is actually a quantum critical point to sepa-
rate the atomic superfluid with an unpaired Fermi surface
from a Fermi gas of trimers. Therefore, Eq. (7) determines
the asymptotic behavior of the solid curve in Fig. 1 toward
the dilute limit jakFj, R�kF ! 0.

We now turn to the side of a > 0 but away from the point
for E3 ¼ E2 , R�=a ¼ 2:18151 where the trimer disap-
pears into the atom-dimer threshold. In this region, the
dilute limit of a three-component Fermi gas reduces to
noninteracting dimers and trimers because their sizes
become negligible compared to a mean interparticle dis-
tance. Since all dimers, if they exist, condense at zero
temperature, the chemical potential is fixed by their bind-
ing energy, 2� ¼ E2. Then the total number density is a
sum of contributions of condensed dimers and trimers:

k3F
2�2

¼ ndimer þ ½6mð3�� E3Þ�3=2
2�2

�ð3�� E3Þ: (8)

With increasing R�=a, dimers appear at ndimer ¼ 0, which
gives

E3 þ k2F
6m

¼ 3

2
E2: (9)

This is a quantum critical point to separate a Fermi gas of
trimers on its left side from the trimer Fermi gas coexisting
with the dimer superfluid on its right side. With increasing
R�=a further, the Fermi surface of trimers disappears at
ndimer ¼ k3F=ð2�2Þ, which gives

E3 ¼ 3

2
E2 , R�

a
¼ 0:359011: (10)

This is a Lifshitz transition, and the system beyond this
point is the dimer superfluid with no unpaired Fermi sur-
face. Therefore, Eqs. (9) and (10) determine the asymptotic
behaviors of the solid and dashed curves in Fig. 1, respec-
tively, toward the dilute limit akF, R�kF ! 0.

Phase diagram.—Finally, we combine the above results
to establish the universal phase diagram of a three-
component Fermi gas. Because we developed controlled
understanding on quantum phases in all available limits of
1=akF and R�kF, one emergent phase boundary has to
end up as another phase boundary of the same type.
Accordingly, the quantum critical lines for the superfluid
transition found in Eqs. (7) and (9) are connected, and those
for the Lifshitz transition found in Eqs. (4) and (10) are
also connected. This leads to the minimal but rich phase
structure shown in Fig. 1.

An interesting observation is that the unpaired Fermi
surface coexisting with the superfluid is that of atoms in the
weak coupling 1=akF � �1 or dense region R�kF � 1,
while it is that of trimers in the strong coupling and dilute
region, 1=akF � 1 and R�kF � 1. Because there is no
sharp distinction between them in terms of symmetries or
topologies, the Fermi surfaces of atoms and trimers in the
superfluid phase can be smoothly connected. If we asso-
ciate three components of fermions with three colors of
quarks [8–10], this observation corresponds to a smooth
crossover from deconfined quarks to confined baryons with
decreasing density, which is known as the quark-hadron
continuity [50,51]. Accordingly, the analogous new feature
in a three-component Fermi gas shall be termed an
‘‘atom-trimer continuity.’’
Regarding low-lying excitations in the superfluid phase,

the breaking of the SUð3Þ � Uð1Þ symmetry down to
SUð2Þ � Uð1Þ generates three Nambu-Goldstone bosons
[20]. Furthermore, in the presence of an unpaired Fermi
surface, there exists a gapless fermionic excitation which
has the character of an atom on one side and that of a trimer
on the other side. Because only the parity of a particle
number is conserved in the superfluid phase, an unpaired
atom and a trimer cannot be distinguished by their particle
numbers. Accordingly, the gapless fermionic excitation
can also exhibit a crossover with its effective mass chang-
ing smoothly from m to 3m, which signals the atom-trimer
continuity [52].
In addition to the controlled analyses, we also develop a

model analysis to quantify the phase diagram. A guiding
principle to construct the model is that it must incorporate
the correct asymptotic behaviors discussed above. The
simplest possibility is just to add a contribution of
noninteracting trimers to the mean-field grand potential
density (3):

�MFþT ¼ �MF � ½6mð3�� E3Þ�5=2
90�2m

�ð3�� E3Þ: (11)

By solving the gap equation @�MFþT=@� ¼ 0 and the
number density equation 3ni ¼ �@�MFþT=@� at � ! 0,
we find that the superfluid transition takes place at

E3 þ k2F
6m

¼ 3

2
E2�ðaÞ: (12)

The obtained quantum critical line is plotted in Fig. 2 by
the solid curve, which continuously interpolates the correct
asymptotic behaviors [Eqs. (7) and (9)] in the weak and
strong coupling limits akF ! 	0. In particular, we find
R�kF ¼ 0:288325 at 1=akF ¼ 0 and its maximum R�kF ¼
0:381739 reached at 1=akF ¼ 0:314545.
On the other hand, in the range of Fig. 2, the Lifshitz

transition takes place at E3 ¼ 3� where the Fermi surface
of trimers disappears with increasing 1=akF. The obtained
quantum critical line is plotted by the dashed curve, which
again yields the correct asymptotic behavior [Eq. (10)] in
the strong coupling limit akF ! þ0. Similarly, the Fermi
surface of trimers appears at E3 ¼ 0 and that of atoms
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disappears at� ¼ 0, which correspond to the left and right
edges of the shaded region in Fig. 2, respectively. While
they define sharp boundaries in our simple treatment of
trimers as noninteracting particles, such sharp boundaries
need not actually exist. Indeed, a more elaborate model
with interaction terms
tyc i�i þ H:c: added to the mean-
field plus trimer model can incorporate the atom-trimer
continuity by hybridizing an unpaired atom and a trimer
(represented by t) by a condensed dimer [52]. The shaded
region is thus meant to indicate where the smooth cross-
over from the Fermi surface of atoms to trimers takes place
with increasing 1=akF.

We also extend the mean-field plus trimer model (11) to
nonzero temperature with a caveat that the mean-field
approximation overestimates the critical temperature in
the strong coupling region 1=akF * 0 [53]. Figure 3 shows
the obtained superfluid critical temperature as a function of
1=akF for three different values of R�kF. With decreasing
R�kF from above, the superfluid is gradually suppressed by
the emergence of trimers. Eventually, below the critical
value R�kF ¼ 0:381739, there appears a finite window in
1=akF where the superfluid is completely depleted by the
trimer Fermi gas, which gives rise to a pair of quantum
critical points. These are the same type of quantum critical
point as that studied in the context of Bose-Fermi mixtures
[52,54]. Also, the same role of the trimer in the dilute limit
was discussed in Ref. [26] based on approximate three-
body calculations.

Summary and discussion.—A narrow Feshbach reso-
nance sets the stage to investigate universal aspects of a
three-component Fermi gas. We explored its universal phase
diagram with equal masses, densities, and interactions and
found the minimal but rich phase structure shown in Fig. 1.
Our main discovery is a new type of crossover physics: In
addition to the ordinary BCS-BEC crossover from loosely
bound Cooper pairs to tightly bound dimers, unpaired fer-
mions coexisting with the superfluid can change smoothly
from atoms to trimers, corresponding to the quark-hadron

continuity in a dense nuclear matter [50,51]. This new
feature, termed an atom-trimer continuity, provides a novel
analogy between ultracold atoms and quantum chromody-
namics and should be investigated further.
At zero temperature, even identical fermions can form

Cooper pairs in some partial wave channel [55]. An inter-
action between unpaired atoms in the weak coupling region
1=akF � �1 is induced by a density fluctuation of the
other components of fermions, while an interaction
between unpaired trimers in the strong coupling region
1=akF � 1 is induced by a density fluctuation of the
superfluid dimers which dominates over a direct trimer-
trimer interaction. Because both induced interactions cause
an instability in the p-wave channel [56], the previously
unpaired Fermi surface exhibits the p-wave superfluidity
regardless of whether it was of atoms or trimers. Therefore,
the atom-trimer continuity remains intact. Here the p-wave
pairing of atoms or trimers breaks the SUð2Þ � Uð1Þ sym-
metry of the s-wave superfluid phase down to SUð2Þ � Z2

besides broken rotational symmetries. On the other hand,
because the s-wave superfluid phase with no unpaired
Fermi surface retains the SUð2Þ � Uð1Þ symmetry, the
previous Lifshitz transition (dashed curve in Fig. 1)
becomes the p-wave superfluid transition. The trimer
Fermi gas phase is still distinct from the other two phases
because its symmetry breaking pattern is different,
SUð3Þ � Uð1Þ ! SUð3Þ � Z6 by any pairing of trimers.
Thus far we focused on the maximally symmetric case,

while our approach can be easily generalized to unequal
masses, densities, and interactions. Furthermore, the ideas
developed here can be used to investigate universal aspects
of other systems, such as a two-component Fermi gas with
a large mass ratio>13:6 [57], which also lacks a universal
ground state in the vicinity of a broad Feshbach resonance.
The author thanks J. Carlson, S. Reddy, and N.

Yamamoto for valuable discussions and a LANL
Oppenheimer Fellowship for the support of this work.
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FIG. 3 (color online). Superfluid critical temperatures in units
of TF � k2F=ð2mkBÞ for R�kF ¼ 0:40 (dashed curve), 0.381 739
(dotted curve), and 0.36 (solid curve). These values of R�kF are
above, at, and below the critical resonance range for opening the
complete depletion of the superfluid by the trimer Fermi gas,
which gives rise to a pair of quantum critical points.
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FIG. 2 (color online). Quantum critical lines for the superfluid
transition (solid curve) and the Lifshitz transition (dashed curve)
based on a mean-field plus trimer model (11). The shaded region
indicates where the smooth crossover from the Fermi surface of
atoms (left side) to trimers (right side) takes place.
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