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The random walk process underlies the description of a large number of real-world phenomena. Here

we provide the study of random walk processes in time-varying networks in the regime of time-scale

mixing, i.e., when the network connectivity pattern and the random walk process dynamics are unfolding

on the same time scale. We consider a model for time-varying networks created from the activity potential

of the nodes and derive solutions of the asymptotic behavior of random walks and the mean first passage

time in undirected and directed networks. Our findings show striking differences with respect to the

well-known results obtained in quenched and annealed networks, emphasizing the effects of dynamical

connectivity patterns in the definition of proper strategies for search, retrieval, and diffusion processes in

time-varying networks.
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Random walks on networks lie at the core of many real-
world dynamical processes, ranging from the navigation
and ranking of information networks to the spreading of
diseases and the routing of information packets in large-
scale infrastructures such as the Internet [1–6]. In recent
years, empirical evidence pointing out the heterogeneous
topology of many real-world networks has led to a large
body of work focusing on the properties of random walks
in networks characterized by heavy-tailed degree distribu-
tions and other features such as clustering and community
structure [1,7–12]. Although these studies provided a
deeper understanding of processes of technological rele-
vance such as World Wide Web navigation and ranking,
they have mostly focused on the situation in which the time
scale characterizing the changes in the structure of the
network and the time scale describing the evolution of
the process are well separated [13–17]. While convenient
for analytical tractability, this limit is far from realistic in
many systems including modern information networks, the
diffusion and search of information in microblogging
systems and social networking platforms, the spread of
sexually transmitted diseases, or the diffusion of ideas
and knowledge in social contexts. In all these cases, the
concurrence of contacts and their dynamical patterns are
typically characterized by a time scale comparable to that
of the diffusion process, motivating the development of
study models able to account for effects of the time-varying
nature of networks on dynamical processes [18–27].

Motivated by the above problems, we study the random
walk process in a fairly general class of time-varying net-
works. Namely, we consider the activity-driven class of
models for time-varying networks presented in Ref. [23]
that allows for an explicit representation of dynamical
connectivity patterns. We derive the analytical solutions

of the stationary state of the random walk and the mean
first passage time [28] in both directed and undirected
time-varying networks. We find that the behavior of the
random walk and the ensuing network discovery process
in time-varying networks is strikingly different from that
occurring in quenched and annealed topologies [1,3,8,29].
These results have the potential to become a starting
point for the definition of alternative strategies and
mechanisms to explore and retrieve information from
networks and more accurately characterize spreading and
diffusion processes in a wide range of dynamic social
networks.
Activity-driven network models focus on the activity

pattern of each node, which is used to explicitly model
the evolution of the connectivity pattern over time. Each
node i is characterized by a quenched fixed activity rate ai,
extracted from a distribution FðaÞ, that represents the
probability per unit time that a given node will engage in
an interaction and generate the corresponding edge con-
necting it with other nodes in the system. In the simplest
formulation of the model, networks are generated accord-
ing to the following memoryless stochastic process [23]:
(i) At each time step t, the instantaneous network Gt starts
with N disconnected nodes. (ii) With probability ai�t,
each vertex i becomes active and generates m undirected
links that are connected to m other randomly selected
vertices. Nonactive nodes can still receive connections
from other active vertices. (iii) At time tþ �t, all the
edges in the network Gt are deleted and the process starts
over again to generate the network Gtþ�t. It can be shown
that the full dynamics of the network is encoded in the
activity rate distribution, FðaÞ, and that the time-
aggregated measurement of network connectivity yields a
degree distribution that follows the same functional form
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as that of the distribution FðaÞ. This distribution can be
assumed a priori or derived from empirical data in the case
of high-quality data sets such as those from social or
information networks [23].

Although the above model is memoryless, it can be
considered as the simplest yet nontrivial setting for the
study of the concurrence of changes in connectivity pattern
of the network and the dynamical processes unfolding on
its structure. We define the random walk process on time-
varying networks as follows: at each time step t the net-
workGt is generated, and the walker diffuses for a time�t.
After diffusion, at time tþ �t, a new network Gtþ�t is
generated (see Fig. 1). The concurrent dynamics of the
random walker and the network thus take place with the
same time scale, which introduces a feature not found in
the equivalent processes in quenched or annealed net-
works, namely, that walkers can get trapped in temporarily
isolated nodes. In other words, the diffusive dynamic of the
particles is ‘‘enslaved’’ to the local connectivity pattern of
each node so that effectively the diffusive process is trans-
formed in a ‘‘transport’’ process defined concurrently by
the network dynamic and the particle diffusive process.

The probability PiðtÞ that a random walker is in node i at
time t obeys the master equation

Piðtþ�tÞ ¼ PiðtÞ
�
1�X

j�i

��t
i!j

�
þX

j�i

PjðtÞ��t
j!i; (1)

where ��t
i!j is the propagator of the random walk, defined

as the probability that the walker moves from vertex i to
vertex j in a time interval �t. At any time t, node i will be
linked to node j if node i becomes active and chooses to
connect to node j (with probability mai�t=N) or if node j
becomes active and connects to node i (with probability
maj�t=N). In the first case, the instantaneous average

degree of node i, conditioned to the fact that it has become
active, is ki ¼ mð1þ hai�tÞ, while in the second case we
have ki ¼ 1þmhai�t, where the average is conditioned
to the fact that a vertex j has fired and has connected to i.
Awalker in node iwill then have to chose which one of the
ki connections to follow. We focus on homogenous random
walks. In this case, the probability of moving from node i
to node j is inversely proportional to ki. Thus the propa-
gator can be written as

��t
i!j ¼

mai�t

N

1

mð1þ hai�tÞ þ
maj�t

N

1

1þmhai�t
’ �t

N
ðai þmajÞ; (2)

where in the last expression we have neglected terms of
order higher than �t.
In order to obtain a system level description it is conve-

nient to group nodes in the same activity class a, assuming
that they are statistically equivalent, i.e., considering the
limit N ! 1 [1,6]. Let us define the number of walkers in
a given node of class a at time t as WaðtÞ ¼ ½NFðaÞ��1

W
P

i2aPiðtÞ, where W is the total number of walkers in
the systems. Considering Eq. (1) in the limit �t ! 0 we
can write

@WaðtÞ
@t

¼ �aWaðtÞ þ amw�mhaiWaðtÞ

þ
Z

a0Wa0 ðtÞFða0Þda0; (3)

where w � W=N is the average density of walkers per
node, and we have considered the continuous a limit.
The first two terms are contributions due to the activity
of the nodes in class a, active nodes which release all the
walkers they have and receive walkers originating from all
the other nodes. The final two terms represent the contri-
bution to inactive nodes due to the activity of the nodes in
all the other classes. The stationary state of the process is
defined by the infinite time limit limt!1 _WaðtÞ ¼ 0. Using
this condition in Eq. (3), we find the stationary solution

Wa ¼ amwþ�

aþmhai ; (4)

characterizing the stationary state of the random walk
process in activity-driven networks, where � ¼R
aFðaÞWada is the average number of walkers moving

out of active nodes. In the stationary state, this quantity is
constant, and we can evaluate it self-consistently, which
implies the equation

FIG. 1 (color online). Activity-driven random walk process.
Active nodes are shown as fully colored (red) nodes. Walkers are
presented as small (green) particles inside nodes. Links used by
walkers to move from one node to another are shown in solid
(red) lines, while edges connecting empty nodes are shown as
dashed lines. Here we considered m ¼ 2.
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� ¼
Z

aFðaÞamwþ�

aþmhai da: (5)

By considering heavy-tailed activity distributions of the
form FðaÞ � a��, the explicit solution for� can be written
in terms of hypergeometric functions that can be numeri-
cally evaluated. Heavy-tailed activity distributions have
been empirically measured in real-world time-varying
networks [23].

To support the results of the analytical treatment, we
have performed extensive Monte Carlo simulations of the
random walk process in activity-driven networks withN ¼
105 nodes, m ¼ 6, and w ¼ 102 walkers. In particular, we
consider a power-law distribution FðaÞ � a��, with activ-
ity restricted in the interval a 2 ½�; 1� to avoid possible
divergencies in the limit a ! 0. As shown in Fig. 2, the
analytical solution reproduces with great accuracy the
simulation results. It is worth noting that in quenched
and annealed networks the number of walkers in each
node of degree k is a linear function of the degree
Wk � k [1,8]. However, in time-varying networks the num-
ber of walkers is not a linear function of the activity but
saturates at large values of a. The difference is due to the
properties of the instantaneous network, where the nodes
with high activity have on average k�m connections at
each time step, and therefore a limited capacity for collect-
ing walkers. This key feature cannot be recovered from
time-aggregated views of dynamical networks. To clarify
this question, we compare numerical simulations of
walkers in a network obtained by integrating the activity-
driven model withN ¼ 105 nodes,m ¼ 6, and FðaÞ � a�2

over T ¼ 50 time steps with the results obtained in the
instantaneous network (see inset of Fig. 2). The lack of a
saturation is simply an artifact of using the time-
aggregated network and highlights the importance of an
appropriate consideration of the time-varying feature of

networks in the study of exploration and spreading pro-
cesses in dynamical complex networks.
We next focus on the study of the transport dynamics in

such networks by analyzing the mean first passage time
(MFPT) [8,28], i.e., the average time needed for a walker
to arrive at node i starting from any other node in the
network. In other words, the MFPT is the average number
of steps needed to reach or find a specific target with
obvious consequences for network discovery processes.
Let us define pði; nÞ as the probability that the walker
reaches the target node i for the first time at time t ¼
n�t. Since each node is able, in principle, to connect
directly to any other node, this quantity is given simply
by pði; nÞ ¼ �ið1� �iÞn�1, where �i is the probability that
the random walker jumps to node i in a time interval �t.
From Eq. (2), the probability that a walker in vertex j
jumps to i in a time �t is given by ��t

j!i. Thus, we can

write �i ¼ P
jðWj=WÞ��t

j!i, where we have replaced the

probability that a single random walker is at node j at time
t by its steady-state value Wj=W. The MFPT can thus be

estimated as

Ti ¼
X1
n¼0

�t npði; nÞ ¼ �t

�i

¼ NW

maiW þP
j ajWj

: (6)

Interestingly, the MFPT of each node i is inversely propor-
tional to its activity plus a constant contribution from all
the other nodes, in clear contrast to what happens in
quenched and annealed networks where �i is equivalent
to the stationary state of the random walk, �i ¼ Wi=W. As
before, the underlying cause of this fundamental difference
is the fact that in activity-driven networks the walker can
be trapped in a node with low activity for several time
steps. The form of �i must then consider explicitly the
dynamical connectivity patterns to account for the result-
ing delays. Figure 3 confirms these results with extensive
Monte Carlo simulations matching the analytical results
presented in Eq. (6).
The previous approach can be readily extended to the

case of directed networks. By the use of the activity-driven
framework, it is possible to define two types of time-
varying directed networks. When a node i is active, the
m-generated links could be outgoing edges (Type I) or
ingoing edges (Type II). For both types of directed net-
works it is possible to write down the diffusion propagator
by following the same approach used in the undirected
case. In particular, it is possible to show that if we define
WI

aðtÞ and WII
a ðtÞ as the number of walkers in networks of

Type I and II, respectively, their stationary values read as

WI
a ¼ w

a

1

h1ai
; WII

a ¼ aw
1

hai : (7)

While we will report the full calculation elsewhere, this
result can be intuitively understood by considering that in
Type I networks active nodes create outgoing links.
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FIG. 2 (color online). Main plot: Stationary density Wa of
random walkers in activity-driven networks with activity distri-
bution FðaÞ � a��. We consider � ¼ 2 (circles) and � ¼ 2:8
(diamonds). Solid lines represent the analytical prediction of
Eq. (4). Inset: Stationary density Wa for random walks on top of
an activity-driven network with FðaÞ � a�2, integrated over T ¼
50 time steps. The solid line corresponds to the curve Wa � a,
fitting the simulation points for large values of a. Simulation
parameters: N ¼ 105, m ¼ 6, � ¼ 10�3, and w ¼ 102. Averages
are performed over 103 independent simulations.
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Walkers are thus more likely to diffuse out of these nodes,
meaning that the higher the activity, the smaller the number
of walkers in the nodes of that class. In Type II networks,
on the other hand, active nodes create ingoing links.
Walkers are thus more likely to diffuse into high activity
nodes, and the scaling of the stationary state is linear with
the activity. Interestingly, the undirected functional form of
the stationary state is a combination of these two different
behaviors.

By following the same reasoning used for the undirected
case, it is straightforward to derive the analytic expression
of the MFTP for directed activity networks, namely,

TI
i ¼

NWP
j ajWj

; TII
i ¼ N

mai
: (8)

In the first case, the MFPT is independent of the activity of
the considered node. The walker can move to node i just
when other active nodes create outgoing links pointing to i.
In the second case, the MFPT is just proportional to the
activity of the node i and is not a function of the activity of
the other nodes. In this case we also recover that the
propagator of the random walk for undirected activity-
driven networks has these two symmetric contributions
that both contribute to the undirected MFPT.

The analytical results can be validated by means of
Monte Carlo simulations. The right inset of Fig. 3 refers
to activity networks of Type I. We fixN ¼ 103,m ¼ 6, one
walker, and activities distributed according to a power-law
FðaÞ � a�2. We then measured the MFPT selecting 103

targets for each activity class. The simulations are indis-
tinguishable from the analytical result in Eq. (8). The left
inset in Fig. 3 refers to activity networks of Type II under
the same simulation parameters except for the number of

nodes fixed to N ¼ 104 in this case. Again, a perfect match
is observed with the analytical result Eq. (8).
From the above results, it is evident that the dynamics of

time-varying networks significantly alters the standard
picture achieved for dynamical processes in static net-
works. Focusing on the specific case of activity-driven
networks and the simple random walk process, the present
results open the path to a number of future studies where
the dynamics of the network will have to be considered to
avoid misleading results in the analysis of dynamical
processes in most situations of practical interest. Finally,
we note that the time-varying networks model we have
considered is Markovian (memoryless) and lacks
dynamical correlations, at odds with many real-world dy-
namical networks [21]. The investigation of the effects of
these relevant properties on diffusion calls for additional
research efforts.
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