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We develop a theory for the spin-echo dynamics of a heavy hole in a quantum dot, accounting for both

hyperfine- and electric-field-induced fluctuations. We show that a moderate applied magnetic field can

drive this system to a motional-averaging regime, making the hyperfine interaction ineffective as a

decoherence source. Furthermore, we show that decay of the spin-echo envelope is highly sensitive to the

geometry. In particular, we find a specific choice of initialization and �-pulse axes which can be used to

study intrinsic hyperfine-induced hole-spin dynamics, even in systems with substantial electric-field-

induced dephasing. These results point the way to designed hole-spin qubits as a robust and long-lived

alternative to electron spins.
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Electron spins in solid-state systems provide a versatile
and potentially scalable platform for quantum information
processing [1,2]. This versatility often comes at the ex-
pense of complex environmental interactions, which can
destroy quantum states through decoherence. Many theo-
retical and experimental studies have now established that
the coherence times of electron spins in quantum dots
[3–6], bound to donor impurities [7,8], and at defect
centers [9] are typically limited by the strong hyperfine
interaction with surrounding nuclear spins [2,10].
Heavy-hole (HH) spin states in III–V semiconductor quan-
tum dots have emerged as a platform that could mitigate
the negative effects of the hyperfine interaction. Because of
the p-like nature of the valence band in III–V materials,
the contact interaction vanishes for hole spins, leaving
only the weaker anisotropic hyperfine coupling [11,12].
Moreover, the anisotropy of this interaction in two-
dimensional systems should allow for substantially longer
dephasing times in a magnetic field applied transverse to
the quantum-dot growth direction [10,11].

Recent experiments have measured hyperfine coupling
constants for holes [13–15], as well as spin relaxation (T1)
[16] and free-induction decay times T�

2 , through indirect
(frequency domain) [17] and direct (time domain) studies
[18]. Coherent optical control has now been demonstrated
for hole spins in single [18,19] and double quantum dots
[20]. This technique has been used to implement a Hahn
spin-echo sequence [18] giving an associated spin-
echo decay time, T2 � 1 �s. The T2 value reported in
Ref. [18] has been attributed to device-dependent
electric-field fluctuations, rather than the intrinsic hyper-
fine interaction. Motivated by these recent experiments,
here we present a theoretical study of heavy-hole spin-echo
dynamics with an emphasis on identifying the optimal
conditions for extending coherence times. In particular,
we show that dephasing due to electric-field fluctuations,
as proposed in Ref. [18], is dramatically suppressed in an
alternate geometry considered here. Moreover, in contrast

with the case of electron spins, we find that hole spins can
enter a motional-averaging regime in a moderate magnetic
field. In this regime, coherence is no longer limited by the
hyperfine interaction, solidifying the potential for long-
lived hole-spin qubits.
We consider a heavy-hole spin interacting with nuclear

spins in a flat quantum dot with weak strain (see Fig. 1).
The HH spin is then described with the following
Hamiltonian [21] (setting @ ¼ 1):

H ¼ HZ þ hzSz; HZ ¼ ��HBSx �
X
k

�ikBI
x
k; (1)

where S ¼ �=2 is a pseudospin-1=2 operator in the two-
dimensional (Jz ¼ �3=2) HH subspace and Ik the nuclear
spin at site k. HZ gives the hole- and nuclear-Zeeman
interactions for an in-plane magnetic field B ¼ Bx̂ [see
Fig. 1(a)]. �ik is the gyromagnetic ratio of isotope ik at site

FIG. 1 (color online). (a) Quantum-dot geometry, with nuclear
field hz and magnetic field B ¼ Bx̂. For unstrained and flat
quantum dots (d � L), �H ¼ g?�B ’ 0 and hx;y ’ 0

[11,22,23]. (b) Hahn-echo sequence. Two � rotations (U� and
Uy

�, taken here about the x axis) are applied at t ¼ � and 2�, to
refocus the HH spin.
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k having total spin Iik . The hole gyromagnetic ratio is

�H ¼ g?�B, with g? the in-plane g factor for a dot with
growth axis along [001] and �B the Bohr magneton. The
hyperfine interaction [10,11] is expressed in terms of the
Overhauser operator, h ¼ P

kAkIk. The coupling constants
Ak are given by Ak ¼ Aikv0jc ðrkÞj2, with Ai the hyperfine
constant for isotope i, v0 the volume occupied by a single
nuclear spin, and c ðrkÞ the HH envelope wave function.
When the isotopes are distributed uniformly across the
dot, we define the average A ¼ P

kAk ’ P
i�iA

i, with �i

the isotopic abundance. In this case, and for a Gaussian

envelope function in two dimensions, Ak ’ ðA=NÞe�k=N

[26], with N ¼ 104–106 a typical number of nuclear spins
within a quantum-dot Bohr radius. The ratio of jAj to the

strength of the hyperfine coupling of electrons jAðeÞj has
been estimated theoretically [11] in GaAs and confirmed
experimentally [13,15] in InGaAs and InP=GaInP to be

jA=AðeÞj � 0:1. For simplicity, we will evaluate numerical
estimates with a single averaged value jAij ’ jAj ’ 13�eV
[10,11] and �i, �i appropriate for In0:5Ga0:5As.

Spin echo.—Under the action of Eq. (1), spin dephasing
results from fluctuations in hz. Provided these fluctuations
remain static on the time scale of decay of the hole spin,
this source of decay can be removed via a Hahn echo [see
Fig. 1(b)]. The process is better analyzed in the interaction
picture with respect to HZ,

~HðtÞ ¼ ~hzðtÞ~SzðtÞ; (2)

where, for any O, ~OðtÞ ¼ eiHZtOe�iHZt. In particular,
~hzðtÞ ¼ P

kAk½Izk cosð�ikBtÞ � Iyk sinð�ikBtÞ� and ~SzðtÞ ¼
½Sz cosð�HBtÞ � Sy sinð�HBtÞ�. The time-evolution opera-

tor after a time 2� is then given by

~Uð2�Þ ¼ Te�i
R

2�

0
dt ~HeðtÞ: (3)

Here, T is the time-ordering operator and the modified
echo Hamiltonian,

~HeðtÞ ¼
(
~HðtÞ 0 � t < �;

��
~HðtÞ�� � � t � 2�;

(4)

takes into account �� pulses (� rotations about � ¼ x, y,
z). As seen in Eq. (4), �x pulses (but in general not �y, �z)

have the beneficial effect of inverting the sign of the
Hamiltonian, ~HðtÞ ! � ~HðtÞ, in the interval � � t � 2�.
Provided ~HðtÞ is approximately static over the interval
0< t < 2�, this will induce time-reversed dynamics for
� � t � 2�, refocusing decay at the time 2�. For this
reason, unless otherwise specified, we will focus in the
following discussion on a geometry with the magnetic field
along x̂ and �x pulses. We will contrast this analysis later
with an alternate geometry relevant to recent experiments.

Vanishing g?.—We first consider the limit �H ¼
g?�B ¼ 0 in Eq. (1). The dynamics we find in this limit
will be a good description whenever �H < �i, correspond-
ing to g? < 10�3 (g? < 5� 10�3 has been reported in 2D

wells [27]). This limit considerably simplifies the theoreti-
cal analysis and allows for an exact solution: H becomes
block diagonal in the eigenbasis of Sz and, in each block,
the eigenstates are obtained after rotating Izk eigenstates by
an angle �k ¼ � arctanð2�ikB=AkÞ about ŷ. Representative
results of the exact evolution of hSxð2�Þi are shown in
Fig. 2. The spin-echo signal has a remarkable dependence
on the magnetic field: there is a clear transition from a low-
field regime, where the decay time decreases with increas-
ing B, to a high-field regime, where there is no decay, only
modulations of the echo envelope.
To give physical insight, we have developed an analyti-

cal approximation scheme based on theMagnus expansion.
The Magnus expansion is an average-Hamiltonian theory
typically applied to periodic and rapidly oscillating sys-
tems [28]. This scheme is suggested by the oscillating
terms in Eq. (2), and will allow us to analyze the more
general problem with �H � 0. In the Magnus expansion,
we assume the evolution operator, Eq. (3), can be written

as ~Uð2�Þ ¼ e�iHMð2�Þ ¼ e�i
P1

i¼0
HðiÞð2�Þ. The ith-order term,

HðiÞðtÞ, is found using standard methods [28]. Each higher-
order term in the Magnus expansion contains one
additional integral over time. Oscillating terms are there-
fore suppressed by a factor of order k ~Hk=!, with ! the
typical oscillation frequency. The leading-order term is

Hð0ÞðtÞ¼HðtÞt, where HðtÞ is simply the average of ~HeðtÞ
over an interval t. The spin components S� (� ¼ x, y, z)
are then given by

hS�ð2�Þi¼h ~Uyð2�Þ~S�ð2�Þ ~Uð2�Þi¼heiLMð2�Þ ~S�ð2�Þi; (5)

where LMðtÞ is defined by LMð2�ÞO ¼ ½HMð2�Þ;O� and
hOi ¼ TrfO	g. The initial state 	 ¼ 	S 	 	I is assumed to
describe a product of the hole-spin (	S) and nuclear-spin
(	I) density matrices, where the nuclear spins are in an
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FIG. 2 (color online). Exact analytical spin-echo decay with
B ¼ 50 mT (solid gray curve), B ¼ 2 T (dash-dotted line),
and B ¼ 10T (solid black line), corresponding to the regimes
B & A=ð�i

ffiffiffiffi
N

p Þ, B ’ A=ð�i

ffiffiffiffi
N

p Þ, and B * A=ð�i

ffiffiffiffi
N

p Þ, respec-
tively. Markers show the approximate form, Eq. (7). We have
chosen hSxð0Þi ¼ 1=2, N ¼ 104, �H ¼ g?�B ¼ 0, and �i from
Table 1 of Ref. [10].
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infinite-temperature thermal state. ForN 
 1 uncorrelated
nuclear spins, the central-limit theorem gives nearly
Gaussian fluctuations, resulting in

heiLMð2�Þ ~S�ð2�Þi ’
�
exp

�
� 1

2
hL2

Mð2�ÞiI
�
~S�ð2�Þ

�
S
; (6)

where we define hL2
MðtÞiIOS ¼ TrIfðL2

MðtÞOSÞ	Ig and
hOiS ¼ TrSfO	Sg.

At high B, rapid oscillations in ~HðtÞ allow us to

keep only the leading term: LMð2�ÞOS ’ Lð0Þð2�ÞOS ¼
½Hð0Þð2�Þ;OS�. Setting �H ¼ 0, as appropriate for Fig. 2,

and with the help of
P0
k

A2
k ’ �iA

2=ð2NÞ (where the prime

restricts the sum to nuclei of isotopic species i), we obtain

hSxð2�Þi
hSxð0Þi

’ exp

�
�X

i

4�iA
2IiðIi þ 1Þ

3Nð�iBÞ2
sin4

�
�iB�

2

�	
: (7)

As seen in Fig. 2, Eq. (7) (markers) reproduces the exact
dynamics very well. The precise conditions for the validity
of the Magnus expansion will be given below.

The simple form of Eq. (7) enables us to understand
why the behavior of hSxð2�Þi changes as B is increased.

For B � A=ð�i

ffiffiffiffi
N

p Þ (gray solid line in Fig. 2), a
short-time expansion of Eq. (7) gives hSxð2�Þi ’
hSxð0Þið1� ð�=�0Þ4Þ ’ hSxð0Þie�ð�=�0Þ4 , with

�0 ’ 1ffiffiffiffi
B

p
�X

i

�ið�iAÞ2
4N

IiðIi þ 1Þ
3

	�1=4
: (8)

Surprisingly, when B is increased, �0 decreases. This
behavior is opposite to the situation for electron spins, in
which the echo decay time increases for increasing B [29].

This decrease is due to rapid fluctuations in ~hz from nuclear
spins precessing at frequencies ��iB. The Hahn echo can
no longer refocus these dynamical fluctuations at finite B,
although Eq. (7) does predict partial recurrences (dash-
dotted line in Fig. 2) due to the finite number of discrete
precession frequencies ��iB.

In contrast, at large magnetic field, B * A=ð�i

ffiffiffiffi
N

p Þ, the
system enters a motional-averaging regime in which the

decay of hSxð2�Þi is bounded by �ðA=B�i

ffiffiffiffi
N

p Þ2, giving
rise to beating (black solid curve in Fig. 2). This beating
has the same physical origin as electron-spin-echo
envelope modulation (ESEEM) [30], although the extreme
anisotropy of the hole hyperfine interaction allows
uniquely for its complete suppression. Figure 3 shows the
1=e decay time �0 as B is increased, leading to a disconti-

nuity when �iB
ffiffiffiffi
N

p
=A * 1, at which point hSxð2�Þi always

remains close to its initial value [see Eq. (7)].
Finite g?.—Although there are definite advantages to

making flat unstrained dots leading to g? ’ 0 and hx;y ’ 0,

current experiments are performed on hole systems with
finite (albeit small) g? [18,31]. For this general case, with
�H ¼ g?�B � 0, we have no closed-form exact solution

for the dynamics, but our analysis can still be applied for a
certain range of �, B.
We neglect subleading oscillating terms in the Magnus

expansion when kðHð0ÞÞ2k 
 kHð0ÞHð2Þk, kðHð1ÞÞ2k. More
specifically, if the relevant fast oscillation frequency is
!� �iB, each precessing nuclear spin experiences a typi-
cal hyperfine field 
!rms � A=N from the hole. Otherwise,
if the fast frequency is!� �HB, the hyperfine field acting

on the precessing hole is of order 
!rms � A=
ffiffiffiffi
N

p
, averag-

ing over the nuclear configurations. As a consequence, the
parameter 
!rms=! < 1 controls the expansion with

!rms and ! given in Table I for each regime. In addition
to bounded oscillating terms, the Magnus expansion gen-
erates terms that grow with �. These terms approach�1 at
�� �max, beyond which a finite-order Magnus expansion
may fail. Nevertheless, the Magnus expansion will provide
an accurate description whenever 
!rms=! < 1 and for
� & �max. Estimates of �max are given in Table I. The
sufficient conditions presented here may be overly con-
servative in specific cases. For example, the parameters of
the B ¼ 50 mT curve of Fig. 2 give a short �max < 0:1 ns,
while the Magnus expansion is clearly valid up to a much
longer time scale. This is, however, a fortuitous example;
we find that in analogous calculations of free-induction
decay, the bounds are tight.
In practice, the value g? ¼ 0:04 measured in Ref. [31]

suggests that �H 
 �i in many current experiments. For
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FIG. 3 (color online). Decay time �0 vs B. Here, � ¼ P
i�i�i

and parameters are as given in the caption of Fig. 2. Insets:
Typical hSxð2�Þi in each of the three regions: �B

ffiffiffiffi
N

p
=A � 1,

�B
ffiffiffiffi
N

p
=A� 1, and �B

ffiffiffiffi
N

p
=A 
 1.

TABLE I. The Magnus expansion will generally reproduce the
correct dynamics for 
!rms=! < 1 and � < �max, with!, 
!rms,
and �max given below in three regimes.

�H 
 �i �H � �i <
A

B
ffiffiffi
N

p �H � A
B
ffiffiffi
N

p < �i

! �B�H �B�i �B�i


!rms �A=
ffiffiffiffi
N

p �A=N �A=N
�max �!=
!2

rms � 1
A ð!=
!rmsÞ3 �!=
!2

rms

PRL 109, 237601 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

7 DECEMBER 2012

237601-3



g? ¼ 0:04, the condition B> A=ð�H

ffiffiffiffi
N

p Þ is already satis-
fied above a rather small value, B * 100 mT for N � 104.
In Fig. 4 we plot representative curves in this motional-
averaging regime, displaying the same features discussed
for g? ¼ 0. Additionally, fast oscillations at the hole
Zeeman frequency �HB induce beating in the echo enve-
lope function hSxð2�Þi, which is not present for g? ¼ 0.

Decay anisotropy.—While the results discussed so far
are specific to �x pulses, other schemes are possible.
Because of the extreme anisotropy of the hole-spin hyper-
fine coupling, the spin-echo decay is also highly aniso-
tropic, depending on both the initialization and �-pulse
axes. If the hole spin is initialized along a generic in-plane
direction n̂ ¼ nxx̂þ nyŷ, and � rotations are performed

about that same axis, we find that hSð2�Þ � n̂i=hSð0Þ � n̂i is
independent of n̂ when g? ¼ 0. This result is to be
expected since any in-plane component of the hole spin

experiences the same effective field ~hzðtÞ along the z axis.
On the other hand, for g? � 0, rotational symmetry about
the z axis is broken, resulting in a strong in-plane anisot-
ropy. For the parameters of Fig. 4, but with initialization
along ŷ and�x pulses, we obtain that hSyð2�Þi is dominated

by the hole Larmor precession about the x axis and
approaches the simple sinusoidal function hSyð2�Þi ’
hSyð0Þi cosð2�HB�Þ in the motional-averaging regime,

�HB > A=
ffiffiffiffi
N

p
.

Additional dephasing mechanisms other than the nu-
clear bath can also have a strong influence on the preces-
sion about x̂, introducing other sources of anisotropy. In
particular, the decay of hSyð2�Þi was measured in Ref. [18]

with�z pulses used for the Hahn echo. The resulting decay

was found to be approximately exponential, hSyð2�Þi ’
hSyð0Þie�2�=T2 , with a B-independent T2 � 1 �s. This

behavior was attributed to spectral diffusion induced by
electric-field noise, which we model here by setting

�HB ! �HBþ 
!ðtÞ in Eq. (1). The observed exponen-
tial decay is consistent with Gaussian white noise
[32] h
!ðtÞ
!ðt0Þi
! ¼ 2

T2

ðt� t0Þ [and h
!ðtÞi
! ¼ 0],

where h� � �i
! indicates averaging with respect to realiza-
tions of 
!ðtÞ. We have included this additional dephasing
mechanism in the evaluation of Eq. (6) for the �x-pulse
echo sequence examined previously and obtained a power-
law decay at � 
 T2:

hSxð2�Þi
hSxð0Þi

’
�
exp

�hh2ziI
2

X
�¼y;z

f2�ðtÞ
	�


!
’ 1

1þ�=�D
; (9)

where fyð�Þ ¼ R
2�
0 sin�ðtÞsgnð� � tÞdt, fzð�Þ ¼R

2�
0 cos�ðtÞdt, �ðtÞ ¼ �HBtþ

R
t
0 
!ðt0Þdt0, and

�D ¼ 1þ ð�HBT2Þ2
2hh2ziIT2

: (10)

This decay time scale is exceedingly long (�D ’ 20 s)
for the experimental value �HB ’ 2� 1011 s�1 and using
hh2ziI � 1015 s�2, which demonstrates the negligible effect of
spectral diffusion on the previous discussion (e.g., Figs. 2–4).
For simplicity, we have derived Eqs. (9) and (10) with static
nuclear-field fluctuations hh2ziI. This corresponds to a worst-
case scenario for the presentmodel.At thehighmagnetic field
of Ref. [18] (B� 8 T), motional averaging would likely
inhibit decay even further.
Conclusion.—We have calculated the spin-echo dynam-

ics of a single heavy-hole spin in a flat unstrained quantum
dot. The relevant dynamics are highly anisotropic in the
spin components and �-rotation axes. When �H � �i, we
predict an initial decrease of the coherence time with
increasing B, followed by a complete refocusing of the
HH-spin signal and motional averaging when B * Bc

(Bc � A=�i

ffiffiffiffi
N

p ’ 3 T for N ¼ 104). The motional-
averaging regime is also realized when �H 
 �i, relevant
to current experiments. In this regime, decay due to the
hyperfine coupling can only occur for � * �max / B, and
can therefore be completely suppressed. We have further
shown that device-dependent electric-field noise becomes
negligible for a specific geometry, allowing for a measure-
ment of the limiting intrinsic decoherence due to nuclear
spins. We expect the systematic approximation scheme
introduced here to find wide applicability to a number of
other challenging spin dynamics problems associated with
nitrogen vacancy centers, donor impurities, and electrons
in quantum dots.
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