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An idea is proposed for realizing a fully spin-polarized Dirac semimetal in frustrated itinerant magnets.

We show that itinerant electrons on a triangular lattice exhibit the Dirac cone dispersion with half-metallic

behavior in the presence of a three-sublattice ferrimagnetic order. The Dirac nodes have the same structure

as those of graphene. By variational calculation and Monte Carlo simulation, we demonstrate that the

ferrimagnetic order with the Dirac node spontaneously emerges in a simple Kondo lattice model with

Ising anisotropy. The realization will be beneficial for spintronics as a candidate for a spin-current

generator.
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Massless Dirac fermions show a substantially different
nature from ordinary electrons. The peculiar nature origi-
nates in the characteristic energy dispersion—the nodal
structure with linear dispersion often referred to as the
Dirac cone. While the Dirac fermions were originally
introduced in relativistic quantum theory, the recent dis-
covery of graphene [1,2], a single layer sheet of graphite,
has carved out a new direction of their study in condensed
matter systems [3,4]. In graphene, two Dirac cones appear
in the energy dispersion of � electrons, which are at the K
andK0 points in the Brillouin zone for the two-dimensional
honeycomb lattice. The Fermi level of this two-
dimensional conductor comes right at the nodal points,
and the low-energy Hamiltonian is well approximated by
the Weyl equation [5]. Various remarkable electronic and
transport properties of graphene are the consequences of
these Dirac cones in the band structure.

The extraordinary nature of Dirac fermions in graphene
has also attracted a great deal of interest from its applica-
tion to electronics [3]. From the viewpoint of such potential
applications, it is of great interest to control the character-
istic band structure. Furthermore, it is also desired to
control the electronic spin degree of freedom for the appli-
cation to spintronics [6]. However, there is not as much
flexibility in graphene, as the Dirac cone is a direct con-
sequence of the honeycomb lattice geometry and the rela-
tivistic spin-orbit interaction is very weak.

In this Letter, we propose an alternative solution for
manipulating the spin degree of freedom by seeking pos-
sible emergence of Dirac fermions from itinerant magnets.
We show that itinerant electrons coupled to a well-known
ferrimagnet on a triangular lattice give rise to the Dirac
nodes in their band structure, similar to those of graphene.
The resultant massless Dirac fermions are spin polarized,
and they are stable in a wide range of the spin-charge
coupling including typical values in solids. We demon-
strate that, by an unbiased Monte Carlo (MC) simulation
as well as a variational calculation, such a Dirac half-metal
with ferrimagnetic order spontaneously emerges in a

minimal Kondo lattice type model. The results strongly
suggest the possibility of realizing the exotic electronic
state in transition-metal and rare-earth compounds, which
generally retain much higher controllable degrees of free-
dom than graphene. Such a new family will not only add a
member to the known list of Dirac electrons in solids
[7–10], but will also bring a completely new aspect by
the spin polarization. In a half-metal, the electric current is
perfectly spin polarized as the low-energy excitations only
exist for the majority spin [6]. This nature works as a
spin-current generator by filtering out the minority-spin
electrons. Thus, our proposal opens a new frontier for the
application of massless Dirac fermions, especially for
spintronics [11].
Let us first discuss a naive, rather trivial approach to

achieve a Dirac half-metal. We here consider a single-band
ferromagnetic Kondo lattice model (double-exchange model)
on a honeycomb or kagome lattice [see Figs. 1(a) and 1(b)].
The model consists of the nearest-neighbor hopping of
electrons and the exchange interaction between the elec-
tron spin and the localized moment, whose Hamiltonian is
given by

H ¼ �t
X

hi;ji;�
ðcyi�cj� þ H:c:Þ � J

X
i

�i � Si: (1)

Here, ci� (cyi�) is the annihilation (creation) operator of an
itinerant electron with spin � ¼" , # at the ith site, �i and
Si represent the itinerant and localized spin, respectively,
t is the transfer integral, and J is the on-site Kondo
coupling. Hereafter, we take t ¼ 1 and J > 0.
In this model, when J is sufficiently large compared to

the bandwidth at J ¼ 0, a ferromagnetic order is stabilized
by the double-exchange mechanism in a wide range of

electron filling n ¼ P
i�hcyi�ci�i=2N, where N is the sys-

tem size [12,13]. In the ferromagnetic phase, the band is
split in two by the large exchange coupling according to
the spin component, and each band has exactly the same
form as that for the noninteracting case J ¼ 0. Hence, in
principle, the Dirac half-metal arises for the honeycomb
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and kagome lattices, as the noninteracting bands on these
lattices have the Dirac nodes. However, these situations are
very difficult to realize in solids as neither such a strong
exchange interaction nor the honeycomb and kagome
structures is easily realized in magnetic compounds.

As a more realistic approach, here we propose a simple,
but rather nontrivial route to the half-metallic Dirac fer-
mion systems. Let us consider the model in Eq. (1) on a
triangular lattice, and the situation in which a three-
sublattice collinear ferrimagnetic order with up-up-down
spin configuration is realized; see Fig. 1(c). By treating the
localized moments as classical spins with jSij ¼ 1, the
band structure is easily calculated by the exact diagonal-
ization of the Hamiltonian. The lower three bands of the
total six bands are shown in Fig. 2; the two bands with
upward arrows are of up spins, and the band with down-
ward arrow is of down spin (the other upper three bands
have similar form with opposite spins).

The band structure has a notable feature at the energy
" ¼ �J; the two up-spin bands touch each other at the K
and K0 points in the Brillouin zone to form a Dirac-type
point node with linear dispersion, and the down-spin band
has the band top at the same points with an ordinary
parabolic dispersion. See also the enlarged figure in

Fig. 2(b) and the energy dispersion along the symmetric
lines in Fig. 2(c).
In this situation, when the electron filling is at n ¼ 1=3,

the two lower bands are fully occupied while the remaining
bands (including the upper three) are unoccupied; the
Fermi level is located at the nodes where the three bands
meet. As the down-spin band has an energy gap, the half-
metallic Dirac electrons are obtained by electron doping to
the unoccupied up-spin band. Although hole doping hides
the Dirac nature as the down-spin parabolic band is doped
at the same time, the situation is avoided by introducing an
additional antiferromagnetic exchange coupling between
the neighboring sites, J0

P
hi;ji�i � Sj [14]. A finite J0 > 0

shifts the down-spin band to the lower energy and isolates
the half-metallic Dirac nodes energetically, as demon-
strated in Figs. 2(d) and 2(e). Hence, the simple ferrimag-
netic order on the triangular lattice realizes the peculiar
Dirac half-metallic state near 1=3 filling.
The Dirac nodes have essentially the same structures as

those in graphene. Under the ferrimagnetic order, the
Hamiltonian is written as

H ¼ X
k

�J�z
A �k ��k

��k �J�z
B �k

�k ��k ðJ þ 6J0Þ�z
C

0
BB@

1
CCA: (2)

Here, the upper two rows correspond to the sites with the
up localized moment (A, B sublattices) and the bottom row
is for the down one (C sublattice) in the three-site unit cell.
In Eq. (2), �z is the z component of the Pauli matrix for
itinerant electrons, k is the wave vector, and �k is the

Fourier transform of the hopping term given by �k ¼
�tfeikx þ ei½�kx=2þð ffiffi3p =2Þky� þ ei½�kx=2�ð ffiffi3p =2Þky�g. By using
k � p perturbation around the K and K0 points in the
Brillouin zone [5] and by expanding the result up to the
first order in terms of t�x=J and t�y=J (� is the relative

wave vector measured from the K and K0 points), we end
up with the low-energy Hamiltonian which is factorized
into two parts. One is a 2� 2 Hamiltonian for the up-spin
honeycomb subnetwork of the A and B sublattices, and the
other is a localized state at the down-spin sites in the C
sublattice. The former is given by

H Dirac
k� ¼ �J 3

2 itð�x � i�yÞ
� 3

2 itð�x � i�yÞ �J

 !
; (3)

where the sign� corresponds to the K and K0 points. This
has an equivalent form to that of graphene.
It is worth noting that the Dirac nodes are formed imme-

diately by switching on J. However, when J is small, the
low-energy physics at n ¼ 1=3 is not characterized solely
by the massless Dirac fermions because there is a band
overlap at the energy of the Dirac nodes. The band overlap
comes from the second lower band for up spin, which has an
energy minimum at k ¼ ð2�=3; 0Þ and its threefold sym-
metric points for small J; the minimum energy is given by

FIG. 1 (color online). Schematic pictures of (a) a honeycomb
ferromagnet, (b) kagome ferromagnet, and (c) three-sublattice
triangular ferrimagnet. The arrows at each site represent local-
ized spins.
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"ð2�=3;0Þ ¼ t=2þ 3J0 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðJ þ 3J0 � t=2Þ2 þ 2t2
p

. In order

for the Dirac nodes to be isolated at the Fermi level, this
energy should be higher than that at the K and K0 points,
"K ¼ �J. Hence, theDirac nodes are energetically isolated
and play a decisive role when the condition
ðJ þ 3J0Þ=t > 1 is satisfied. This condition is important
because the necessary J and J0 are much smaller than the
noninteracting bandwidth 9t, and it is indeed satisfied in a
wide range of materials.

Thus far, we assumed the presence of three-sublattice
ferrimagnetic order. In the following, we show that such
order is indeed stable in the Kondo lattice-type model as in
Eq. (1). Here, we simplify the model by assuming the
localized moments are the Ising spins taking the values
Si ¼ �1.

First, we investigate the ground state phase diagram near
n ¼ 1=3 by a variational calculation. We compare the
ground state energy of the two-sublattice stripe phase and
three-sublattice ferrimagnetic phase that appeared in our
previous study [15], in addition to the ferromagnetic phase.
The results at J ¼ 2 are shown in Fig. 3 for J0 ¼ 0 and
0.05. At J0 ¼ 0, the ground state in the plotted range is
dominated by the ferrimagnetic phase as well as the stripe
phase. The different phases are separated by phase separa-
tion. As shown in Fig. 3(b), the introduction of small J0
largely stabilizes the ferrimagnetic phase near n ¼ 1=3 as
well as the stripe phase. This is because the itinerant
electron spins are polarized parallel to the localized spins
in the ground state, leading to an energy gain (loss) by the
antiferromagnetic J0 for the two states (the ferromagnetic
state).

FIG. 2 (color online). Band structures of the model in Eq. (1) under the three-sublattice ferrimagnetic order at J ¼ 2. (a) The overall
band structure of the three lower-energy bands at J0 ¼ 0, (b) the enlarged view near the Fermi level " ¼ �J at n ¼ 1=3 in the first
quadrant, and (c) the cut along the symmetric lines. (d), (e) Results at J0 ¼ 0:05. The arrows indicate the spins for each band. In (a), the
gray hexagon on the basal plane shows the first Brillouin zone for the magnetic supercell. The dashed line in (e) indicates the Fermi
level in the MC simulation at T ¼ 0:06 and N ¼ 182 shown in Fig. 4.

FIG. 3 (color online). Ground state phase diagram obtained by
variational calculation at (a) J0 ¼ 0 and (b) J0 ¼ 0:05. The
schematic picture of magnetic structure in each phase is shown.
The white region indicates the electronic phase separation (PS)
and the dotted vertical lines indicate n ¼ 1=3.
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We next examine the stability of the ferrimagnetic order
at finite temperatures by an unbiased MC simulation. For
the simulation, a standard algorithm for fermion systems
coupled to classical fields is used [16]. In this method, the
trace over the fermions in the partition function is calcu-
lated by the exact diagonalization, while the trace over
classical spin configurations is computed by a classical MC
method using the METROPOLIS dynamics. The phase
transition to ferrimagnetic phase is detected by using two
parameters [17]. One is the pseudomoment defined by

~Sm ¼

2ffiffi
6

p � 1ffiffi
6

p � 1ffiffi
6

p

0 1ffiffi
2

p � 1ffiffi
2

p

1ffiffi
3

p 1ffiffi
3

p 1ffiffi
3

p

0
BBBB@

1
CCCCA

Si

Sj

Sk

0
BB@

1
CCA; (4)

where m is the index for the three-site unit cells, and
(i, j, k) denote the three sites in themth unit cell belonging
to the sublattices (A, B, C), respectively. We measure

the summation M ¼ ð3=NÞPm
~Sm and the susceptibility.

The other is the azimuth parameter c defined by
c ¼ ð ~MxyÞ3 cos6�M, where �M is the azimuth angle of

M in the xy plane and ~Mxy ¼ 3M2
xy=8 (M2

xy ¼ M2
x þM2

y).

The ferrimagnetic ordering is signaled by Mxy ! 2
ffiffiffiffiffiffiffiffi
2=3

p
,

jMzj ! 1=
ffiffiffi
3

p
, and c ! 1 at low temperature T ! 0,

respectively, [15,18,19].
Figure 4 shows the MC results at J ¼ 2 and J0 ¼ 0:05 in

the slightly electron doped region to n ¼ 1=3 [see also
Fig. 2(e)]. The results indicate two successive phase tran-
sitions at TKT ¼ 0:192ð15Þ and at Tc ¼ 0:108ð9Þ. The tran-
sition temperatures are estimated by extrapolating the peak
of susceptibilities �xy and �z as N ! 1. The transition at

TKT is considered a Kosterlitz-Thouless type with the
growth of quasilong-range order [15]. On the other hand,
the phase transition at Tc is a three-sublattice ferrimagnetic
ordering. The MC result and the above analysis for the
ground state consistently indicate that the three-sublattice
ferrimagnetic order is stabilized in the vicinity of n ¼ 1=3
in the wide range of parameters for J and J0, spontaneously
giving rise to the Dirac half-metal.
As such ferrimagnetic order was indeed observed in

several insulating magnets [20,21], our results in the mini-
mal model will stimulate the hunt for a Dirac half-metal in
transition-metal and rare-earth compounds. The present
results will be qualitatively robust even when extending
the model to more realistic situations. For instance, the
ferrimagnetDic state remains stable when including the
transverse components of localized spins, at least, in
the presence of strong Ising anisotropy. Multiband effects
may be avoided under a particular crystal field; for
instance, the d-electron a1g orbital isolated by a strong

trigonal field is a good candidate for the realization.
Interlayer coupling, however, may open a gap at the
Dirac nodes. Nevertheless, a straightforward stacking of
layers or sufficiently isolated layers in a controlled thin
film will be promising to preserve the massless nature.
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