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We consider how superconducting correlations influence spin-transfer torques in ferromagnetic super-

conductors. It is demonstrated that there is a novel torque arising from particle-hole interference that

depends on the U(1) phase associated with the superconducting order parameter. We also show that there

is an equilibrium exchange torque between two ferromagnetic superconductors in contact via a normal

metal mediated by Andreev states. The latter equilibrium magnetic torque is also sensitive to spin-

resolved phase differences in the superconducting order parameters as well as to an externally applied

phase difference.
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Introduction.—The synthesis of materials with magnetic
and superconducting order offers interesting possibilities.
The combination of spin-filtering in ferromagnets with
dissipationless currents in superconductors is of fundamen-
tal interest and offers routes towards novel types of con-
trolled charge and spin flow. Considerable activity in the
field focuses on the range of the superconducting proximity
effects, demonstrating that singlet Cooper pairs can be
converted to triplet Cooper pairs in inhomogeneous [1–4]
or time-dependent [5–7] magnetic textures.

In ferromagnets, spin-transfer torques attract great inter-
est since they involve the coupling between itinerant car-
riers and collective magnetic order parameters and can be
useful in magnetic random access memories and oscillator
circuits [8,9]. Spin-transfer torque result from the transfer
of spin angular momentum from the (spin) current to the
magnetization. While many aspects of how s-wave super-
conductivity affects spin-transport and spin-transfer tor-
ques are known [10], there are no predictions of how
spin-transfer torques are manifested in ferromagnetic
superconductors. In these systems, we show that the
spin-transfer torques depend on the phase of the super-
conducting pairing correlations. This can be utilized as an
additional way of controlling and detecting spin-transport
and magnetization dynamics.

In this Letter, we compute magnetic torques in ferro-
magnetic superconductors, in both equilibrium and out-of-
equilibrium cases. Out of equilibrium, a spin-polarized
current with a polarization that is noncollinear to the
magnetization and injected from a normal metal (NM)
towards a ferromagnetic superconductor (FMS) generates
a novel torque on the magnetization of the FMS due to
particle-hole interference, which strongly depends on the
phase of the spin-triplet superconducting order parameter.
We further demonstrate that there is an equilibrium
magnetic torque in a FMS-NM-FMS Josephson contact
mediated by Andreev states [11]. Here, the formation of
spin-triplet electron-hole Andreev bound states with a

noncollinear spin polarization plays the essential role.
We demonstrate the penetration of this equilibrium torque
into the FMS and its sensitivity to an external applied phase
difference as well as the spin-resolved phase of each FMS.
Theory.—To model the coexistence of bulk supercon-

ductivity and ferromagnetism, as experimentally verified
in UGe2 [12], URhGe [13], and UCoGe [14], we consider
equal spin-pairing triplet superconductivity. Then, Cooper
pairs are not broken by Zeeman fields smaller than 70 meV
in UGe2 [12]. The variation of the equilibrium exchange
interaction between two ferromagnets with the relative
angles of the magnetizations is a Fermi surface property
[15]. Similarly, the out-of-equilibrium spin-transfer torque
is governed by states near the Fermi level.
Let us first demonstrate that the out-of-equilibrium spin

transfer in ferromagnetic superconductors is qualitatively
different than that in conventional ferromagnets.
Conventionally, the spin-transfer torque exerted on the
magnetic order parameter equals the loss of transverse
spin current in the ferromagnet. This absorption takes place
over a small distance from the interface region, typically
on the order of a few Fermi wavelengths in strong ferro-
magnets. In contrast, in ferromagnetic superconductors, we
find that the spin-transfer torque does not equal the loss of
quasiparticle spin current. The underlying reason for this
can be understood by inspecting the spin continuity equa-
tion. We start by defining the spin density S and the
Hamiltonian H,

S ¼ 1

2
c y � 0

0 ���

 !
c ; H ¼ H0 �

�� �H�
0

 !
; (1)

where @ ¼ 1 and H0 ¼ �r2=ð2mÞ ��� h � �, � ¼
diagð�";�#Þ. Here, h is the exchange field, � is a vector

of Pauli matrices, and��,� ¼" , # are the superconducting
order parameters for majority and minority spin carriers.
The Hamiltonian (1) determines the rate of change of the
spin density
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@tSþ @iJ
i
S ¼ Ssuper þ �STT; (2)

where

Ji
S ¼

1

2m
Imfc y

1�@ic 1 þ c y
2�

�@ic 2g; (3a)

Ssuper ¼ �Imfc y
2�

��c 1 � c y
1��

�c 2g; (3b)

�STT ¼ c y
1 ½�� h�c 1 � c y

2 ½�� � h�c 2; (3c)

and c 1 and c 2 are electronlike and holelike 2� 1 spinors
constituting the total wave function, i.e., c ¼ ðc 1; c 2ÞT .

The rate of change of the spin density (2) consists of the
quasiparticle spin-current tensor JS [superscript i indicat-
ing its spatial components in Eq. (2)], the spin supercurrent
carried by the condensateSsuper, and the spin-transfer torque

exerted on the ferromagnetic order parameter �STT. The
spin-transfer torque of Eq. (3c) has a simple interpretation
in the case of stationary transport in a normal-metal-
ferromagnet system when it represents the loss of the trans-
verse component of the spin current, @iJ

i
S ¼ �STT. Then,

the total torque is
R
�STT ¼ JSðFMÞ � JSðNMÞ where

JSðNMÞ is the spin current at the NM-FM interface
and JSðFMÞ is the spin current deep inside the ferromagnet.
In metallic ferromagnets in good contact with normal
metals, the incoherence between the spin-up and spin-
down states within the ferromagnet implies that the
transverse components of JSðFMÞ vanish at length scales
that are larger than the transverse decoherence length.
Thus,

R
�STT ¼ m� ½m� JSðNMÞ�, which is the estab-

lished consensus [9].
Since c 1 and c 2 contain contributions from electronlike

and holelike quasiparticles, Eq. (3c) shows that the torque
is directly modified by superconducting correlations. In
turn, these correlations are controlled by the coherence
factors that depend explicitly on the superconducting
U(1) phases associated with each of the order parameters
�� in p-wave ferromagnetic superconductors. This
implies that the spin-transfer torque is sensitive to the
superconducting phase, in contrast to, e.g., the charge
conductance, which is insensitive to the U(1) phase.
The origin of this effect is that the torque acquires
contributions from interference terms of the propagation
of electronlike and holelike excitations. Since these
excitations have different U(1) superconducting phases
due to the spin-resolved condensate, the torque will depend
explicitly on the internal phase difference between
the two spin condensates. We explicitly verify this

statement below. Since a part of the spin current is
carried by the condensate via Ssuper, the loss of the

quasiparticle spin current is not fully compensated by the
torque �STT exerted on the ferromagnetic order parameter.
To explicitly compute the spin-transfer torque, we

consider a two-dimensional system in the x-y plane

[see Fig. 1(a)] and assume there is a normal metal to the

left (x < 0) and a ferromagnetic superconductor to the

right (x > 0). To model spin injection into the ferromag-

netic superconductor, consider an incident particle in the

normal metal at the Fermi energy with a magnetic moment

at an angle � with respect to the z axis; a superposition of

spin up and down states along the z direction. Taking

into account both normal and Andreev reflection as well

as the transverse wave vector ky, the total wave function

in the normal-metal region in spin-Nambu space is c inc ¼
ðc; s; 0; 0Þeikxx þ r"ð1; 0; 0; 0Þe�ikxx þ r#ð0; 1; 0; 0Þe�ikxxþ
r"Að0; 0; 1; 0Þeikxx þ r#Að0; 0; 0; 1Þeikxx, where c ¼ cosð�=2Þ
and s ¼ sinð�=2Þ. The longitudinal wave vector is kx ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2FNM � k2y

q
with kFNM being the Fermi wave vector in the

normal region. In the ferromagnetic superconductor, the

wave function is c trans ¼ t"eðu";0; v"e�i�"
þ�i�" ;0Þeiq"ex þ

t#eð0; u#;0; v#e�i�#
þ�i�# Þeiq#ex þ t"hðv"ei�

"�þi�" ;0; u";0Þe�iq"
h
xþ

t#hð0; v#ei�
#�þi�# ;0; u#Þe�iq#

h
x. In this expression, we

have as an illustration assumed chiral p-wave supercon-

ducting gaps similar to the A2 phase in liquid 3He
[16], �� ¼ ��;0ðkx þ ikyÞ=kF, and it is straightforward

to consider other scenarios. Furthermore, we have

defined q�e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2FS þ 2mð�hþ ij��jÞ � k2y

q
, q�h ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2FSþ2mð�h� ij��jÞ�k2y

q
, and e�i�

�
� ¼ ð�kx þ i�kyÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2FS þ 2m�h
q

, �, � ¼ �1, � ¼" , # , while kFS is the

normal-state Fermi wave vector in the superconducting

region. The transmission and reflection coefficients, which

allow computation of the transport properties, are obtained

by applying continuity of thewave functions and currents at

the interface.
Experimentally, the relations � � h � j��j hold: the

superconducting transition occurs only deep within the fer-
romagnetic phase. To reduce the complexity of the analyti-
cal results, we assume that kFS � kFNM, an assumption that
has no qualitative effects on our main findings. With these
assumptions, the torque in Eq. (3c) is

ð�STTÞx ¼ 8hk2xcse
�x=	SImfA1e

�2ihx=vF ðu�" u# þ v�
"v#eið�

"
þ��#

þÞþi��Þ þA2e
2ihx=vF ðu�" u# þ v�

"v#eið�
#���"�Þþi��Þ

�A3e
ið2k2

FS
�k2yÞx=kFSðv�

" u#e
�i�"� þ u�"v#e�i�#

þþi��Þ þA4e
�ið2k2

FS
�k2yÞx=kFSðu�"v#ei�

#� þ v�
" u#e

i�"
þþi��Þg; (4)

where we have defined 	S ¼ vF=ðj�"j þ j�#jÞ. The ex-
pression for the y component of �STT is obtained from
Eq. (4) by multiplication with an overall factor phase

factor e�i
=2 inside the brackets f� � �g. The torque is
perpendicular to the magnetization, so its z component
vanishes. Both components of the spin transfer torque
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are proportional to the injected transverse spin current
via the overall prefactor cs. The coefficients Aj depend
on the coherence factors and wave vectors but are inde-
pendent of the phase difference �� ¼ �" � �# between
the majority and minority spin superconducting order
parameters.

Equation (4) demonstrates that the spin-transfer torque
is qualitatively different in ferromagnetic superconductors
as compared to that of ferromagnets. The torque has two

terms proportional to e�2ihx=vF that correspond to the
conventional rapid oscillations on a length scale �h ¼
2
=ðk" � k#Þ � 1=h, which becomes of order O ðnmÞ in

strong ferromagnets. However, there are two additional

terms proportional to e�ið2k2
FS
�k2yÞx=kFS , which only appear

in the presence of superconductivity (�� � 0).
Interestingly, these terms introduce a new and shorter
length scale due to the appearance of the term ’ 2kF in
the exponent (note that kFS � ky due to the assumption

kFS � kFNM). The physical origin of these terms is
particle-hole interference which is unique in the super-
conducting state and vanishes when �� ! 0. The injected
spin current causes the transmission of both electronlike
and holelike quasiparticles into the superconductor. The
interference between two electronlike waves (or two hole-
like waves) gives rise to the usual spin-transfer torque
oscillating on the length scale �h. In contrast, the two last
terms in Eq. (4) proportional to u�v represent particle-hole
interference. This also gives rise to a different length scale
since holelike waves have opposite momentum relative to
their group velocity and thus interferes with the electronlike
waves in a way that cancels the exchange-field dependence
on the oscillation length. A unique aspect of the spin-
transfer torque acting on a ferromagnetic superconductor
is that the torque itself might be able to rotate the super-
conducting order parameter [17]. The latter, having a spin-
triplet symmetry, is described by an orbital part and a vector
in spin space. For a sufficiently large torque acting on the
magnetic order parameter, one might expect the supercon-
ducting order parameter to be rotated as well due to the
coupling between them.

An intriguing feature about the spin-transfer torque in
Eq. (4) is that it depends explicitly on the difference ��
between the spontaneously broken U(1) phases of the
superconducting order parameters ��. This is in contrast
to, e.g., the charge conductance, which is insensitive to��.
This property of the spin-transfer torque may be under-
stood as follows. For longitudinal spin currents, the spin
supercurrent is carried by the condensate with phase �" and
the condensate with phase �#, but no superposition of these
occurs. This is different when a transverse spin current is
injected with a spin polarization at an angle ’ with respect
to the magnetic order parameter that corresponds to a
noncollinear superposition of quasiparticles from the two
spin branches of the condensate. Therefore, the phase
difference appears in this contribution to the spin-transfer

torque. As a result, the torque �STT offers a possible probe
for the relative phase difference ��.
Let us investigate this in more detail. In the Hamiltonian

used to model the coexistence of ferromagnetism and
superconductivity, we have assumed that the spin bands
are independent by ignoring, e.g., spin-flip and spin-orbit
scattering. Nevertheless, such processes can influence the
relative superconducting phase between the bands due to a
Josephson coupling between them. We can include these

couplings by terms of the form �Ref�"�
y
# g in the Ginzburg-

Landau free energy. The coupling constant � depends on the
system parameters and may change sign, which dictates
whether the ground-state phase difference is �� ¼ 0 (for
� < 0) or�� ¼ 
 (for � > 0). We have shown that the spin
transfer torque depends on the phase difference��. Even in
the scenario that there are only two possible values of the
phase difference to �� 2 f0; 
g, the absorbed torque is
different in these two cases and the signatures of �� may
thus be seen. We have verified this numerically (not shown)
by considering the total torque absorbed after penetrating
the ferromagnetic superconductor a distance x, �total ¼R
x
0

P
ky
�STTðx0; kyÞdx0, where �STT is given by the general

expression in Eq. (3c). By including all transverse modes,
classical dephasing has also been accounted for. We find
that the torque is suppressed when �� ¼ 
, which may be
understood from Eq. (4). Using a self-consistent calcula-
tion [18], j�"j ’ j�#j for a relatively weak exchange field

h 	 �S, as is relevant for experimentally observed ferro-
magnetic superconductors. As a result, u� ’ u�� and v� ’
v��. When �� ¼ 0, the coherence factors in the terms

e�2ihx=vF , corresponding to the conventional spin-transfer
torque, add constructively. However, a cancellation occurs
when �� ¼ 
, since u� ¼ v�

� for subgap energies (Fermi
level). On the other hand, the torque terms due to particle-
hole interference in Eq. (4) remain rather unchanged when
changing��, as can be seen by using the above-mentioned
symmetries for the coherence factors.
We will now complement the understanding of the out-

of-equilibrium spin-transfer torque with an equilibrium
analogue that can be seen in the Josephson effect between
ferromagnetic superconductors separated by a NM layer
[see Fig. 1(b)]. In this case, in addition to the spin U(1)
phase �� assumed to be identical in both FMSs, there is
also an overall phase difference ’ between the order
parameters of the FMSs. The magnetization vectors of
the FMSs are assumed to be misaligned by an angle �.
For subgap energies jEj 
 j�";#j, successive Andreev

reflections at the NM-FMS interfaces and the coherent
propagation of the excitations between these reflections
lead to the formation of Andreev bound states [19–21].
In our FMS-NM-FMS system, these are correlated
electron-hole pairs in spin-triplet states with a noncollinear
polarization. We have found the spectrum of these Andreev
bound states by considering the electronic states in the
corresponding spinors and their derivatives at the right
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and left NM-FMS interfaces. We restrict ourselves to the
case of a short NM contact with thickness L that is much
smaller than the superconducting coherence length 	. In
this limit, the subgap Andreev states with jEj 
 j�";#j
dominate the superconducting transport properties [22].
The opening of a gap at the Fermi level removes part of
the normal-state exchange torque, and we assume that the
Andreev states dominate the net exchange interaction.

Figure 2 shows the dependence of the Andreev energy
states on the phase difference ’ for �� ¼ 0 and for vary-
ing angles � [� ¼ 0 (a), � ¼ 
=4 (b), � ¼ 
=2 (c), and
� ¼ 
 (d)] and �� ¼ 
 (e) when ky ¼ 0. For both Figs. 2

and 3, we use the same values for the exchange and super-
conducting gap, h=EF ¼ 0:1, h=� ¼ 10, and assumed
transparent interfaces. The Andreev bound states consist
of four branches in the space of electron-hole excitations
and in the space of spin. Figures 2(a)–2(d) show that for
�� ¼ 0 the phase dependence for these branches is shifted
by �� with respect to that of a conventional short SNS

junction, which is given by �e;h ¼ ��0 cosð’=2Þ [23].

Thus, considering transport normal to the interface, the
Andreev energies closely obey the relations �e;h;";# ¼
��0 cos½ð’� �Þ=2� when �� ¼ 0. Note that for the col-
linear configurations (� ¼ 0 or 
) the branches are doubly
degenerate. In contrast, when �� ¼ 
, the dependence on
� is rather weak, as seen in Fig. 2(e) (see also the lower
inset). In this case, the phase dependence is almost the
same as in the conventional SNS case, as seen in the higher
inset of Fig. 2(e).
The spin-polarized Andreev states can carry charge and

spin supercurrent. The spin supercurrent is related to the
magnetic coupling originating from superconducting cor-
relations between the magnetization vectors of the two
FMSs. As a result, an equilibrium exchange torque is
exerted on the magnetization vectors. We have calculated
the x component of this Andreev torque, ð�EXTÞx, using
Eq. (3c) and by summing over the contribution of all
Andreev states. This component is perpendicular to the
plane formed by the two magnetization vectors and tends
to rotate them around the x axis. We have found that this
superconducting torque is odd in � but even in ’, obeying
the relations ð�EXTÞxð�;’Þ ¼ �ð�EXTÞxð2
� �;’Þ and
ð�EXTÞxð�;’Þ ¼ ð�EXTÞxð�; 2
� ’Þ, respectively.
Figure 3 presents the dependence of ð�EXTÞx, acting on

the magnetization in FMS1, on the distance x from the
NM-FMS interface and for different values of � when
�� ¼ 0 (a) and �� ¼ 
 (b). Here, we have fixed ’ ¼

=4. The value of ð�EXTÞx exhibits spatial oscillations with
a period around �h � 1=h, and the amplitude decays with x
over a penetration length, which is a fraction of 	. For
�� ¼ 
, the amplitude of the exchange torque is dimin-
ished, as compared to the �� ¼ 0 case. This behavior is
qualitatively the same as that for the nonequilibrium spin-
transfer torque. The dependence on the phase’ is shown in
the insets of Figs. 3(a) and 3(b). As can be seen, for both
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a short FMS-NM-FMS contact consisting of four branches, two
of which are degenerate for � ¼ 0 (a) and � ¼ 
 (d), (indicated
in different colors) for the electron and hole excitations and for
two directions of the spin. [(a)–(d]) For �� ¼ 0 and versus the
phase difference ’ for the angle � ¼ 0 (a), 
=4 (b), 
=2 (c), and

 (d). (e) For �� ¼ 
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=2 as a function of �,
where the energy is almost independent on the angle � (see also
the lower inset) in contrast to the case of �� ¼ 0. The higher
inset shows the dependence of E=� on ’ for � ¼ 
=2. We have
set h=EF ¼ 0:1, h=� ¼ 10, and ky ¼ 0.

FIG. 1 (color online). (a) Spin-injection into a FMS.
(b) Exchange torque setup for two FMSs separated by a normal
region.
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values of �� the amplitude as well as the direction of the
torque can be tuned by externally changing the phase
difference over the contact.

In conclusion, in ferromagnetic superconductors, there
is a novel spin-transfer torque which arises from particle-
hole interference between quasiparticles from the two spin
branches of the condensate. In a normal-metallic contact
between two ferromagnetic superconductors, an equilib-
rium spin Josephson current arises, which results from
noncollinear magnetizations, is carried by spin-triplet
Andreev bound states, and is sensitive to the spin-resolved
(internal) phase difference and the applied phase difference
between the superconducting order parameters. These find-
ings could open new perspectives for obtaining phase-
dependent spin-polarized transport and magnetization
dynamics by combining ferromagnetic and superconduct-
ing correlations.

J. L. would like to thank A. Sudbø for many useful
discussions. Z. S. and M. Z. acknowledge support by the
Institute for Advanced Studies in Basic Sciences (IASBS)
Research Council under Grant No. G2012IASBS110.
M. Z. thanks ICTP in Trieste for hospitality and support.

[1] For a review, see F. S. Bergeret, A. F. Volkov, and K. B.
Efetov, Rev. Mod. Phys. 77, 1321 (2005).

[2] R. S. Keizer, S. T. B. Goennenwein, T.M. Klapwijk, G.
Miao, G. Xiao, and A. Gupta, Nature (London) 439, 825
(2006).

[3] A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).
[4] J.W.A. Robinson, J. D. S. Witt, and M.G. Blamire,

Science 329, 59 (2010).
[5] M. Houzet, Phys. Rev. Lett. 101, 057009 (2008).
[6] H. Skadsem, A. Brataas, J. Martinek, and Y. Tserkovnyak,

Phys. Rev. B 84, 104420 (2011).
[7] C. Holmqvist, W. Belzig, and M. Fogelström, Phys. Rev. B

86, 054519 (2012).

[8] J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996);
L. Berger, Phys. Rev. B 54, 9353 (1996).

[9] D. C. Ralph and M.D. Stiles, J. Magn. Magn. Mater. 320,
1190 (2008); A. Brataas, A. D. Kent, and H. Ohno, Nat.
Mater. 11, 372 (2012).

[10] X. Waintal and P.W. Brouwer, Phys. Rev. B 65, 054407
(2002); Y. Tserkovnyak and A. Brataas, Phys. Rev. B 65,
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