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We consider a theory for a two-dimensional interacting conduction electron system with strong spin-

orbit coupling on the interface between a topological insulator and the magnetic (ferromagnetic or

antiferromagnetic) layer. For the ferromagnetic case we derive the Landau-Lifshitz equation, which

features a contribution proportional to a fluctuation-induced electric field obtained by computing the

topological (Chern-Simons) contribution from the vacuum polarization. We also show that fermionic

quantum fluctuations reduce the critical temperature ~Tc at the interface relative to the critical temperature

Tc of the bulk, so that in the interval ~Tc � T < Tc it is possible to have a coexistence of gapless Dirac

fermions at the interface with a ferromagnetically ordered layer. For the case of an antiferromagnetic layer

on a topological insulator substrate, we show that a second-order quantum phase transition occurs at the

interface, and compute the corresponding critical exponents. In particular, we show that the electrons at

the interface acquire an anomalous dimension at criticality. The critical behavior of the Néel order

parameter is anisotropic and features large anomalous dimensions for both the longitudinal and transversal

fluctuations.
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A spin current may exhibit interesting topological
properties in systems where a Berry curvature in Bloch
momentum space is induced by the underlying band struc-
ture [1,2], as for example in the case of some hole-doped
semiconductors described by a Luttinger Hamiltonian [3]
or systems featuring a Rashba spin-orbit coupling [4].
More recent prominent examples involve the quantum
spin Hall insulators or topological insulators (TIs) [5,6],
where a Berry curvature in momentum space also arises.
Depending on the physical situation the Berry curvature
may be Abelian or non-Abelian, and determines a mag-
netic monopole in momentum space.

The surface of a TI, when in contact with a material
exhibiting magnetic order, offers a framework for many
topological effects. For instance, the two-dimensional sys-
tem represented by the surface of a topological insulator
can be used as the substrate for a magnetic layer, which can
be either ferromagnetic (FM) or antiferromagnetic (AF).
For a FM layer having a TI as the substrate, a theoretical
study of the magnetization dynamics was carried out
recently [7]. In a similar context, the electric charging of
magnetic textures has also been discussed [8]. Other inter-
esting electromagnetic topological effects with a similar
setup were studied [9–12] and have been shown to exhibit
properties similar to those of axion electrodynamics [13].
In axion electrodynamics a topological term of the form
ð8�2Þ�1��E �B is present [10,13] in the action, where �
is the fine structure constant and � is the so called axion
field. For the case where � is uniform, time-reversal invari-
ant TIs require � ¼ � [10]. Such a term should play a very
important role at the interfaces of TIs with other insulators.
For a magnetic insulating layer on the surface of a TI, a

modification of the magnetization dynamics occurs, due to
a direct coupling of the magnetization to the electric field.
Indeed, we have E � B ¼ E � ðHþ 4�MÞ, giving rise to a
magnetoelectric effect, which influences the precession of
the magnetization [9].
At the same time, the experimental situation is far from

being clear. For instance, from a theory perspective one
would expect that the coupling of a TI to a FM layer would
make the surface states gapped. However, in a very recent
experiment [14] where Fe impurities were deposited on
Bi2Se3, no sign of a gap was found, in apparent conflict
with theoretical expectations. Therefore, further theoreti-
cal studies on the coupling of a TI substrate to a magnetic
system are necessary.
In this Letter we consider the effects of quantum fluc-

tuations stemming from the proximity-induced magnetism
on the surface of a TI. We assume that the electrons on the
surface of the TI interact via a long-range Coulomb inter-
action. For the case of a FM layer in contact with the TI, we
will derive a Landau-Lifshitz (LL) equation which
accounts for these interaction effects. In our calculation
an axionlike term emerges due to quantum fluctuations. At
the interface, it manifests itself as a Chern-Simons (CS)
term [15], which breaks time-reversal symmetry, as a con-
sequence of the coupling of the surface of the TI to the
magnetic layer. Furthermore, the electronic quantum fluc-
tuations make the stiffness anisotropic, even if the bulk of
the FM layer features an isotropic stiffness. We also show
that due to the quantum fluctuations of the electrons, the
critical temperature ~Tc at the interface is reduced relative
to the critical temperature Tc of the FM layer. This allows
the existence of gapless fermions at the interface in the
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temperature range ~Tc � T < Tc where the bulk magnetic
layer is still magnetically ordered.

It has been shown in a recent study [16] that the best
candidate material to gap the topological surface states of a
TI is MnSe, which is an AF insulator. For this case we will
show that a second-order quantum phase transition occurs
at the interface, and that it defines a new universality class.
One consequence of this interface quantum criticality is
that the surface electrons become gapless at the quantum
critical point (QCP). This does not happen in the FM case
we study. Hence, the topologically protected gapless
modes can be restored at zero temperature by disordering
the AF long-range order at the interface. A further impor-
tant feature of this interface quantum criticality is the
emergence of a large anomalous dimension for the Néel
order parameter. Interestingly, at the QCP the fermions will
also acquire an anomalous dimension.

Our starting point is the Lagrangian for conduction
electrons interacting via a Coulomb interaction on the
surface of an insulator either in contact with a bulk ferro-
magnet composed of several layers, similarly to Ref. [7], or
with an AF bulk system. Thus, if n is the induced magne-
tization at the interface and L the angular momentum, the
spin of the conduction electrons, S ¼ ð1=2Þcy ~�c, is
coupled to the total magnetization ð�B=2ÞLþ n via an

exchange term �2JS � ½ð�B=2ÞLþ n�, where cy ¼
½cy" cy# �, with ~� ¼ ð�x; �y; �zÞ being the Pauli matrices.

The lack of inversion symmetry in the direction perpen-
dicular to the interface leads to a spin-orbit coupling of the
Rashba type. Thus, the Lagrangian for the conduction
electrons at the interface reads (we are assuming units
where @ ¼ c ¼ 1),

Lc ¼ cy½i@t þ e’� ivð�y@x � �x@yÞ þ J ~� � n�c
� �

4�
’jrj’; (1)

where v / J. We will give further details on the exchange
part of the Lagrangian shortly. In writing the above
Lagrangian we have assumed that the spin-orbit coupling
is much stronger than the usual kinetic term of the con-
duction electrons, which has been neglected. The auxiliary
(Hubbard-Stratonovich) field ’ accounts for the Coulomb
interaction. Upon integrating out ’ the usual Coulomb
interaction between the electrons is obtained. The nonlocal
Gaussian term for ’ reflects the three-dimensional charac-
ter of the Coulomb interaction in a two-dimensional prob-
lem, similarly to graphene [17]. In this term r is the
two-dimensional gradient and � represents the dielectric
constant.

The full Lagrangian of the systems includes the
Lagrangian describing the magnetization dynamics of the
bulk ferromagnet, which includes a Landau-Ginzburg type
functional and is given by

LFM ¼ b � @tn� �

2
½ðrnÞ2 þ ð@znÞ2�

�m2

2
n2 � u

4!
ðn2Þ2; (2)

where �, u > 0 and m2 ¼ a0ðT � T0Þ, with T0 being the
(mean-field) critical temperature to disorder the ferromag-
net. b is the Berry connection, which fulfills the usual
monopole condition, @bi=@nj � @bj=@ni ¼ �ijknk=n

2.

For m2 < 0 (or T < T0) the bulk ferromagnet is in a
ferromagnetically ordered state.
Before considering the magnetization dynamics, let us

first consider a fluctuation-corrected mean-field theory
where the only fluctuation effects that are taken into
account are the fermionic ones, i.e., � is assumed to be
uniform, and the transverse fluctuations of the magnetiza-
tion vanish. We also neglect the fluctuation effects of the
Coulomb interaction. The calculations are done in imagi-
nary time and at finite temperature.
In this case, after integrating out the fermions, we obtain

the free energy density,

F ¼ �T
X1

n¼�1

Z d2p

ð2�Þ2 lnð!2
n þ v2p2 þ J2�2Þ

þm2

2
�2 þ u

4!
�4; (3)

where !n ¼ ð2nþ 1Þ�T is the fermionic Matsubara fre-
quency. After performing the Matsubara summation, the
remaining integral over momenta contains a zero tempera-
ture contribution which is divergent, requiring regulariza-
tion and renormalization. Using an ultraviolet cutoff
�� a�1, where a is the lattice constant, we can cancel
the dependence on the cutoff by minimally absorbing it in a
redefinition of the Curie temperature of the bulk ferromag-
net precisely at the interface. The physical requirement
(or renormalization condition) is that the zero temperature
fermionic gap, mc � J�0, is finite in the long-wavelength

limit.
The saddle-point approximation yields,

a0ðTc � TÞ ¼ u

6
�2 þ J2T

�v2
ln

�
2 cosh

�
J�

2T

��
; (4)

where Tc is the renormalized Curie temperature of the bulk
ferromagnet at the interface. The critical temperature, ~Tc,
at the interface is obtained by demanding that� vanishes at
T ¼ ~Tc. This yields ~Tc ¼ Tc½1þ J2 ln2=ð�a0v2Þ��1. On
the other hand, by setting T ¼ 0 in Eq. (4), we obtain that
at the interface Tc ¼ um2

c =ð6J2Þ þ J2mc =ð2�a0v2Þ. Note
that this expression only makes sense at the interface and
does not correspond to the physical critical temperature
there, which is actually given by ~Tc. Furthermore, since
v / J and at leading order �2

0 � 6a0T0=u, we obtain that

Tc ! T0 as v ! 0. In order to estimate ~Tc, we assume that
Tc � um2

c =ð6J2a0Þ, such that we have approximately,
~Tc � mcTc½mc þ ð2 ln2ÞTc��1. If we use the estimates
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mc � 28:2 meV and Tc � 70 K [16,18], we obtain ~Tc �
54 K. Thus, our fluctuation-corrected mean-field theory
implies that the critical temperature at the interface is
smaller than the Curie temperature of the bulk ferromag-
net. Therefore, it is possible to destroy the proximity-
induced magnetization at the interface while the bulk
ferromagnet is still ordered. This occurs typically in a
temperature window ~Tc � T < Tc, where we are assuming
that Tc does not differ appreciably from T0. The reduction
of the critical temperature at the interface with respect to
the bulk one is an important consequence of the interplay
between the ferromagnetic proximity effect and the spin-
orbit coupling.

The next step is to compute the fluctuations of the order
parameter around the mean-field theory. Since we are
interested in deriving a differential equation for the mag-
netization dynamics, we will return to real time in the
following and consider a zero temperature calculation. In
order to facilitate our analysis of the problem, it is conve-
nient to rewrite the Lagrangian for the conduction elec-
trons in a QED-like form, which is achieved by the
rescalings ’ ! ðJ=eÞ’, xi ! vxi (i ¼ 1, 2), in the action,
to obtain

L c ¼ �c ði6@� JaÞc þ J� �c c � ð�=2Þa0jrja0; (5)

where the Dirac matrices are defined by 	0 ¼ �z, 	
1 ¼

�i�x, and 	2 ¼ i�y, c ¼ vc, such that the usual relativ-

istic notations for spinors hold with �c ¼ c y	0; also the
usual Dirac slash notation, 6Q ¼ 	�Q�, is being used.

The gauge field is given by a�¼ð’;ny;�nxÞ and �¼nz,

and the dielectric constant, � � �vJ2=ð2�e2Þ. We will
assume that there are N fermionic orbital degrees of
freedom. Thus, integrating out the fermions yields the
gauge-invariant contribution to the effective action,
Sgauge ¼ iNTr lnði6@� Jaþ J�Þ.

The lowest order diagrams associated with the fluctuat-
ing fields are shown in Fig. 1. The approximate evaluation
of Sgauge at long wavelengths yields the leading fluctuation

contribution, Sgauge � SMF
eff þ 
Sgauge, where


Sgauge ¼ NJ2

8�

Z
dt

Z
d2r

�
� 1

3mc

ð����@
�a�Þ2

þ ����a
�@�a� þ 1

mc

½ð@t ~�Þ2 � ðr~�Þ2�
�
; (6)

with the fluctuation ~� arising from the decomposition � ¼
�0 þ ~�. The quadratic fluctuation term in ~� will generate
an anisotropy in the magnetic system, which is isotropic
in the bulk. The first term in Eq. (6) corresponds to a
Maxwell term in (2þ 1)-dimensional electrodynamics.
The second term is a CS term [15] generated by the
quantum fluctuations. This CS term reflects the breaking
of time-reversal symmetry due to the coupling to a mag-
netic layer. In order to better appreciate the effect of the
CS term, it is useful to rewrite the CS contribution to
Sgauge in the form,

SCS ¼
�xy

4�

Z
dt

Z
d2rðny@tnx � nx@tny þ 2n � r’Þ; (7)

where �xy ¼ �0
xyNJ2=e2, with �0

xy ¼ e2=2 (in units where

@ ¼ 1), is the induced Hall conductivity. It is readily seen
that the contribution proportional to nx@tny � ny@tnx
yields an additional Berry phase, as discussed previously
in Ref. [7]. The term proportional to n � r’ is a crucial
contribution stemming from the Coulomb interaction
between the fermions at the interface. Indeed, since ’ is
a fluctuating scalar potential associated to the Coulomb
interaction, this term yields a contribution proportional to
M �E, where E ¼ �r’ is a fluctuation-induced electric
field, and M� n. Thus, this term corresponds to an emer-
gent axionlike term.
The Landau-Lifshitz equation for the magnetization

dynamics at the interface (i.e., at z ¼ 0) can now be
obtained from the Euler-Lagrange equation for the effec-
tive action. We have,

@tn¼n	
�

ij
s ðr2nÞjeiþ

Z�xy

2�v2mc

½ð@2tnÞzez�rðr �nÞ�
�

þZ�xy

2�v2

�
n	Eþ 1

3mc

ðn �ezÞ@tE
�
; (8)

where the stiffness matrix elements are given by 
ij
s ¼

ðZ=v2Þ½�ð
ix
jx þ 
iy
jyÞ þ ð� þ �xy=ð2�mc ÞÞ
iz
jz�,
with Z ¼ ½1�mc�xy=ð2�v2JÞ��1. For the LL equation

in the bulk one has to supply the boundary conditions
for the bulk magnetization, which must reflect the influ-
ence of the surface states of the TI over some penetration
depth into the bulk ferromagnet, assumed to be semi-
infinite, having a surface at z ¼ 0 coinciding with the
interface with the TI. The relevant boundary conditions
at t ¼ 0 are, @znjz¼0¼�Jhcy ~�ci, @znjz¼1¼0, and
limz!1nðr; zÞ ¼ nbðrÞ, where nbðrÞ is the bulk

(a) (b)

(d)(c)

FIG. 1. Diagrams contributing to 
Sgauge, Eq. (6). The wiggled
line represents the vector field a�, the solid line is a Dirac

fermion, and the dashed line represents the fluctuating part of
the � field. Diagram (a) yields the vacuum polarization, while
diagram (d) corresponds to the polarization correction to the
z-component of the magnetization. The diagrams (b) and (c)
cancel out.
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magnetization far away from the interface. Let us see
how these boundary conditions work within a simple
mean-field approximation at T ¼ 0 and consider the fol-
lowing ansatz for the magnetization precession in the

bulk ferromagnet, nðr;z;tÞ¼2�1=2�ðzÞ½cosðk�r�!tÞexþ
sinðk�r�!tÞeyþez�, where ! / k2. Thus, we have

n2 ¼ �2ðzÞ. The boundary conditions at the interface are
�ð1Þ ¼ �b, @z�jz¼0 ¼ �J3�2

0=ð2�v2Þ, where �0 ¼
�ð0Þ ¼ mc =J. We will define the k-dependent length char-

acterizing the longitudinal magnetization in the bulk,

�bðkÞ ¼ ða0T0=�� k2Þ�1=2, where k2 < a0T0=�. The
magnetization � can now be determined [19] by solving
exactly the equation @2�=@z2þ��2

b ��ðu=6�Þ�3¼0. We

obtain �ðzÞ ¼ �bð1� ��e�
ffiffi
2

p
z=�bÞ�1ð1þ ��e�

ffiffi
2

p
z=�bÞ,

where �� ¼ ð�0 � �bÞ=ð�0 þ �bÞ. The boundary condi-

tion at z¼0 yields 8�v2�b��¼2�1=2J3�bð1���Þ2�2
0,

which determines �b in terms of �0 and �b. Note that this
condition yields �0 ¼ �b for J ¼ 0, as it should. This
calculation shows that electrons on the surface of the TI
influence the magnetization dynamics of the bulk over a
characteristic length��b which is uniquely determined by
the boundary conditions.

Equation (8) is one of the main results of this Letter. It
leads to a fluctuation-induced magnetoelectric effect.
One important consequence of Eq. (8) is that due to the
fluctuation-induced electric field, the magnitude of the
magnetization is not constant, as it would be in the case
of the absence of a Coulomb interaction or for a constant
electric field. In particular, if the electric field is only due to
external effects, this result implies that we can use a time-
dependent electric field to control the magnitude of the
magnetization.

Part of the coupling to the electric field, discussed
previously by Garate and Franz [9], is reproduced here as
a fluctuation effect due to the Coulomb interaction between
the spin-orbit coupled electrons lying on the surface of a
TI. We have obtained in addition a contribution involving
@tE that accounts for the time dependence of the electric
field. Note that the term involving ð@2tnÞz is typically small
at low energy and can be safely neglected in most
calculations.

Next we discuss the case of an AF layer on a TI substrate
at zero temperature, which, as we will see, differs funda-
mentally from the case of a FM layer. In the AF case a
quantum phase transition occurs at the interface. In order to
study the phase structure of the theory in this case, we will
work only in imaginary time from now on. Specifically,
we consider a Euclidean effective field theory whose
Lagrangian has the form,

L ¼ �c ð6@� ig1aþ g2�Þc þ �

2
a0jrja0 þ 1

2
½ð@��Þ2

þ ð@�aÞ2� þM2

2
ð�2 þ a2Þ þ �

4!
ð�2 þ a2Þ2; (9)

where we are not making any longer a distinction between
the upper and lower covariant indices, since the metric of
the theory has now a Euclidean signature. Note that we are
also assuming that g1 � g2, as quantum fluctuations in-
duce an anisotropy. In the spirit of effective field theories,
the coupling constants are understood as effective para-
meters to be determined by a renormalization group flow.
Thus, the phase structure of the theory is completely
determined by the renormalization group equations for
the coupling constants.
At low energies and one-loop order (see below) the fixed

point structure will be governed by the dimensionless

couplings ĝ2i ¼ g2i;r=M
�
r (i ¼ 1, 2) and �̂ ¼ �r=M

�
r ,

where �r and gi;r are corresponding renormalized cou-

plings and we are using the renormalized mass Mr as the
renormalization scale [20]. Here � ¼ 4� d, where d ¼
Dþ 1, with D being the spatial dimension. Our analysis
is done in the framework of the � expansion, which is
carried out up to one-loop order. As usual, in such a
renormalization scheme the renormalized mass gives
the inverse of the correlation length, i.e., Mr ¼ ��1. Due
to the coupling between � and the fermions, a mass
anisotropy will be generated, defining in this way two
correlation lengths, related to longitudinal and transversal
fluctuations. We will assume that � refers to the longitudi-
nal correlation length, giving the fluctuations of the� field.
The correlation length due to transversal fluctuations will
be denoted by �?. If � and �? are respectively the critical
exponents of the longitudinal and transversal correlation

lengths, we easily obtain that �� ��?=�, which determines
the crossover exponent � ¼ �=�?. The quantum critical
behavior can be derived from a generalization of the
extended Gross-Neveu model [21] discussed in Ref. [22].
We obtain in this way the one-loop � functions �ĝ2

1
�

Mr@ĝ
2
1=@Mr, �ĝ2

2
� Mr@ĝ

2
2=@Mr and ��̂�Mr@�̂=@Mr in

the form, �ĝ2
1
¼ ��ĝ21 þ Nĝ41=ð12�2Þ, �ĝ2

2
¼ ��ĝ22 þ

ðN þ 3Þĝ42=ð8�2Þ, and ��̂ ¼ ��ûþ ð8�2Þ�1½ð11=2Þ�̂2 þ
2N�̂ĝ22 � 12Nĝ42�. The � function for �̂ ¼ �r=Mr follows
from the nonlocality of the quadratic term in a0. Since
counterterms are local, this term does not renormalize,

which implies simply ��̂ ¼ ðNĝ21=12�
2 � �Þ�̂ .

The quantum critical point is determined by demanding
that the� functions vanish, which yields the infrared stable
fixed points, ĝ21
 ¼ 12�2�=N, ĝ22
 ¼ 8�2�=ðN þ 3Þ, and
�̂
 ¼ 8�2�ð3�Nþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N2 þ 258Nþ 9
p Þ=½11ðNþ 3Þ�. The

anomalous dimension �N of the Néel order parameter at
the interface can be defined via the scaling behavior

h�i �Mð2��þ�NÞ=2
r , and is given at one loop by �N ¼

Nĝ22
=ð8�2Þ ¼ N�=ðN þ 3Þ. For N ¼ 1 and two spatial
dimensions (corresponding to � ¼ 1), we obtain �N ¼
1=4. This large value of the anomalous dimension, as
compared to the value obtained from the Oð3Þ universality
class, reflects the fact that h�i receives contributions from
the composite operator �c c . The scaling behavior of
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n ¼ ðnx; ny; �Þ at the interface is anisotropic, and the

transversal fluctuations have a different anomalous dimen-
sion, which is dominantly determined by the vacuum
polarization diagrams, �?

N ¼ �, yielding �?
N ¼ 1 for

D ¼ 2. It is worth mentioning that two-loop corrections
will be small, but positive (typically�0:03). Therefore, we
expect that a more accurate value for the anomalous di-
mension �?

N is slightly above unity.
The electrons at the interface also have an anomalous

scaling at the quantum critical point. This is in contrast
with the FM case, where the fermionic spectrum is always
gapped at zero temperature. Thus, we obtain the low-
energy behavior, h �c ðpÞc ðpÞi � �i 6p=p2��c , where �c ¼
ĝ22
=ð16�2Þ ¼ �=½2ðN þ 3Þ�. For D ¼ 2 and N ¼ 1, we
obtain �c ¼ 1=8. Note that �c does not receive any

contribution from the fixed point ĝ21;
 at one-loop order.

This is due to the fact that the vector field propagator takes
here the same form as the one in QED where the Feynman
gauge has been fixed.

It remains to compute the critical exponents of the corre-
lation lengths. The longitudinal correlation length exponent

is given by � ¼ ð2þ �MÞ�1, where at one loop, �M ¼
�5�̂
=ð48�2Þ � �N . Thus, by expanding up to first order

in �, we obtain, ��1=2þ�½4ðNþ3Þ��1½ð5=66Þð3�Nþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2þ258Nþ9

p ÞþN�. Setting once more D ¼ 2 and
N ¼ 1, we obtain � � 0:649. The transversal correlation
length exponent, on the other hand, is given
by �? ¼ ð2þ �?

MÞ, where �?
M ¼ �M � �?

N þ �N .
Thus, we obtain �? � �þ 3�=½4ðN þ 3Þ�, which for
N ¼ 1 and D ¼ 2 yields �? � 0:83. Note that the values
of the correlation length exponents differ appreciably
from the one-loop value of the Oð3Þ universality class,

�
one-loop
Oð3Þ � 0:614.

In conclusion, we have shown in the FM case that an
axionlike term is generated in the form of a CS term, which
in turn modifies the magnetization dynamics of the LL
equation. Furthermore, we have shown that for a specific
temperature window it is possible to have gapless fermions
at the interface and, at the same time, a ferromagnetically
ordered layer.

For the case of an AF layer, we have shown that a
quantum phase transition occurs at the interface, and that
the fermion spectrum becomes gapless at the QCP.
Moreover, large values of the anomalous dimensions for
the Néel order parameter were obtained.
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