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Quantum phase transitions in the two-dimensional Kugel-Khomskii model on a square lattice are

studied using the plaquette mean field theory and the entanglement renormalization Ansatz. When 3z2-r2

orbitals are favored by the crystal field and Hund’s exchange is finite, both methods give a noncollinear

exotic magnetic order that consists of four sublattices with mutually orthogonal nearest-neighbor and

antiferromagnetic second-neighbor spins. We derive an effective frustrated spin model with second- and

third-neighbor spin interactions which stabilize this phase and follow from spin-orbital quantum fluctua-

tions involving spin singlets entangled with orbital excitations.

DOI: 10.1103/PhysRevLett.109.237201 PACS numbers: 75.10.Jm, 03.65.Ud, 64.70.Tg, 75.25.Dk

Introduction.—Almost 40 years ago Kugel and
Khomskii realized that spins and orbitals should be treated
on equal footing in Mott insulators with active orbital
degrees of freedom [1]. Their model qualitatively explains
the magnetic and orbital order in KCuF3, which is a
well-known example for spinon excitations in a one-
dimensional (1D) antiferromagnetic (AF) Heisenberg
chain [2]. This archetypal compound is usually given as
an example of the spin-orbital physics [3], which covers a
broad class of transition metal compounds, including
perovskite manganites [4], titanates [5], vanadates [6], ruth-
enates [7], 1D cuprates [8], layered ruthenates [9], and
pnictide superconductors [10]. In all these compounds,
strong intraorbital Coulomb repulsion U dominates over
electron hopping t (t � U), and charge fluctuations are
suppressed. On the one hand, spin degrees of freedom
may separate from the orbitals when the coupling to the
lattice is strong, as in LaMnO3 [4] and recently shown to
also happen in KCuF3 [11]. On the other hand, the spin-
orbital quantum fluctuations are strongly enhanced for
low S ¼ 1

2 spins, as in the three-dimensional (3D) Kugel-

Khomskii (KK) model [12,13], and lead to a spin-orbital
liquid phase in LaTiO3 [5]. Geometrical frustration [14] was
also suggested as a stabilizing mechanism for a spin-orbital
liquid phase [15], with examples on a triangular lattice
in eg (LiNiO2 [16]) and t2g (LiNiO2 [17]) orbital systems.

Frustrated spin-orbital interactions to further neighbors may
also destabilize long-range magnetic order [18]. An opposite
case when orbital excitations determine the spin order has
not been reported until now.

The phase diagram of the 3D KK model remains con-
troversial in the regime of strongly frustrated interactions-
it has been suggested that either spin-orbital fluctuations
destabilize long-range spin order [12] or an orbital gap
opens and stabilizes spin order [13]. This difficulty is
typical for systems with spin-orbital entanglement [19],
which may occur both in the ground state [20] and in
excited states [21]. The best known examples are the 1D

[22] or two-dimensional (2D) [23] SU(4) models, where
spin and orbital operators appear in a symmetric way.
Instead, the symmetry in the orbital sector is much lower,
and orbital excitations measured in KCuF3 [24] are
expected to be inherently coupled to spin fluctuations [25].
In this Letter, we present a surprising noncollinear spin

order in the 2D KK model that goes beyond mean field
studies [26] and explain its origin. So far, noncollinear spin
order has been obtained for frustrated exchange in Kondo-
lattice models on square lattices, without [27] and with
[28] orbital degeneracy, or at finite spin-orbit coupling
[29]. In MnV2O4 spinel, it is accompanied by a structural
distortion and the orbital order [30]. Here, we find yet a
different situation: when frustrated nearest-neighbor (NN)
exchange terms almost compensate each other and orbitals
are in the ferro-orbital (FO) state, the spin order follows
from further neighbor spin interactions triggered by
entangled spin-orbital excitations.
Variational approach.—We begin by presenting two

general variational methods for spin-orbital systems:
(i) the plaquette mean field (PMF) Ansatz [see Fig. 1(a)]
and (ii) the entanglement renormalization Ansatz (ERA)

(a) (b)

FIG. 1 (color online). Two variational Ansätze used in the
present Letter: (a) PMF and (b) ERA. Black dots are lattice
sites, P’s are variational wave functions on 2� 2 plaquettes, and
U’s are variational 2� 2 unitary disentanglers.
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[31] [see Fig. 1(b)]. In the PMF, adapted here from a
similar method for the bilayer KK model [32], one
employs a variational Ansatz in the form of a product of
plaquette 2� 2 wave functions P ’s [33]. Energy is mini-
mized with respect to P ’s to obtain the best approximation
to the ground state. The ERA is a refined version of the
PMF, where the product of the P ’s is subject to an addi-
tional unitary transformation, being a product of 2� 2
‘‘disentanglers’’U. They introduce entanglement between
different plaquettes and make the ERA more accurate.

Kugel-Khomskii model and methods.—The perturbation
theory for a Mott insulator with active eg orbitals in the

regime of t � U leads to the spin-orbital model [34], with
the Heisenberg SU(2) spin interactions coupled to the
orbital operators for the holes in the d9 ionic states,
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Each bond hiji connects NN sites fi; jg along one of the
orthogonal axes � ¼ a, b in the ab plane. The model
describes the spin-orbital superexchange in K2CuF4 [35],
with the superexchange constant J ¼ 4t2=U. The
coefficients r1 � 1=ð1� 3�Þ, r2 ¼ r3 � 1=ð1� �Þ, and
r4 � 1=ð1þ �Þ refer to the d9i d

9
j Ð d8i d
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tions to the upper Hubbard band [34] and depend on
Hund’s exchange parameter

� ¼ JH
U

: (2)

The spin projection operators �s
ij and �t
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ij) configuration for spins S ¼ 1=2 on
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Here, ��i act in the subspace of eg orbitals occupied

by a hole fjxi; jzig, with jzi � ð3z2 � r2Þ= ffiffiffi
6

p
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The term H 0 in Eq. (1) is the crystal field splitting of two
eg orbitals induced by the lattice geometry or pressure,

H 0 ¼ �Ez

X

i

�ci : (5)

When jEzj � J, it dictates the FO order with either z or x
orbitals as long as we stay in the AF regime, see Fig. 2. This
ground state can be further improved using perturbation
theory in a dimensionless parameter j"zj�1 � J=jEzj.

In the PMF, one finds self-consistently mean
fields: s�i � hS�i i, t�i � h��i i, and v�;�

i � hS�i ��i i. Here,

� ¼ a, b, � ¼ x, z, and i ¼ 1; . . . ; 4 labels sites of a single
plaquette; see Fig. 1(a). We assume that either all pla-
quettes are the same or that the neighboring plaquettes
are rotated by �=2 with respect to each other in the
ab plane. In the latter case, the order parameters are
interchanged (a $ b) between neighboring plaquettes

and transform as ftaðbÞi g ! ftbðaÞi g and fv�;aðbÞ
i g ! fv�;bðaÞ

i g.
In the ERA treatment we either assume that all P ’s and
U’s are the same, as in Fig. 1(b), or divide the plaquette
lattices of P ’s and U’s into four sublattices with four
independent P ’s and U’s. One finds that the energy found
in the ERA, when optimized with respect to bothU andP ,
is typically 5–15% lower than that found in the PMF.
Phase diagram.—The phase diagram in the ("z,�) plane

contains six phases; see Fig. 2. The same phases appear in
both the PMF and ERA, which suggests that the phase
diagram is complete. At large � values one finds two FM
phases: either with alternating orbital (AO) order as
observed in K2CuF4 [36,37] or with FOz order (FMz). At
Ez <�1:8J, a second-order transition occurs from the FM
to the FMz phase (all other transitions involve both spins,
and orbitals are first order) at "z=r1 ¼ �0:934 (� 0:837)

in the PMF (ERA). In these phases, �ðijÞ
t ¼ 1 and the

Hamiltonian (1) reduces to the eg orbital model [38] or

to the generalized compass model [39], in transverse field
Ez. At Ez ¼ 0, one finds AO order with h�xi � 0, while
finite Ez induces transverse polarization h�zi � 0.
The phase diagram includes also two AF phases. They

have uniform FO order with h�zi> 0 for Ez > 0 and

FIG. 2 (color online). Phase diagram of the 2D KK model
in the PMF (solid lines) and ERA (dashed lines) variational
approximations. Insets show representative spin and orbital
configurations on a 2� 2 plaquette: x-like (tc ¼ 1

2 ) and z-like

(ta;c ¼ � 1
2 ) orbitals [47] are accompanied either by AF spin

order (arrows) or by spin singlets in the PVB phase (ovals). The
FM phase has a two-sublattice AO order (with taðbÞ ¼ 1

2 at

Ez ¼ 0) or FOz order (FMz). Between the AF and FM (FMz)
phase one finds an exotic ortho-AF phase-it has a noncollinear
spin order; see text.
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h�zi< 0 forEz < 0. The spin interactions in twoAF phases
are nonequivalent and are much weaker for Ez < 0 than for
Ez > 0; this difference increases up to a factor of 9 for fully
polarized orbitals [40]. These two phases are separated by
the plaquette valence bond (PVB) phase with pairs of
parallel spin singlets, horizontal or vertical and alternating
between NN plaquettes. Note that the PVB phase is an
analogue of spin liquid phases found before for the 3D
KK model [12] and the bilayer [32].

Finally, at Ez < 0 and �� 0:15, we find a novel exotic
‘‘orthogonal AF’’ (‘‘ortho-AF’’) phase with entanglement
(v�;�

i � s�i t
�
i ) that emerges between the AF and FM (FMz)

phases. This state is characterized by the noncollinear
magnetic order (see Fig. 3), with NN spins being orthogo-
nal to each other and next-nearest neighbor (NNN) spins
being AF. This phase is robust and has a somewhat
extended range of stability in the ERA. In contrast to the
frustrated spin J1-J2 interactions on a square lattice [41],
one finds here that J1 is negligible and spin order follows
from further neighbor couplings.

Effective spin model.—To explain the exotic magnetic
order in the ortho-AF phase shown in Fig. 3, we derive an
effective spin model for this phase. We show that NNN and
third NN (3NN) spin interactions emerge here from the
frustrated spin-orbital superexchange, V � H �H 0,
treated as perturbation of the orbital ground state j0i of
the unperturbed Hamiltonian H 0 (5). Note an analogy
to hidden multiple-spin interactions derived recently for
frustrated Kondo-lattice models [42].

For negative "z < 0, the ground state j0i of H 0 is the
FOz state with z orbitals occupied by a hole at each site,
�ci j0i ¼ � 1

2 j0i, and the energy "0 ¼ � 1
2 j"zj per site. A

finite gap that occurs for orbital excitations helps to remove
high spin degeneracy in j0i by effective spin interactions
in the Hamiltonian Hs that can be constructed using the
expansion in powers of j"zj�1,

Hs ’ JfN"0 þHð1Þ
s þHð2Þ

s þHð3Þ
s g; (6)

where N is the number of sites. The first-order term is an

average Hð1Þ
s � h0jV j0i. Similarly, to evaluate Hð2Þ

s and

Hð3Þ
s , we determine the matrix elements hnjV j0i for the

excited states jniwith a certain number of z orbitals flipped
to x orbitals. All the averages are taken between orbital
states, and the spin model Eq. (6) follows.
The first order yields the Heisenberg Hamiltonian

Hð1Þ
s ¼ 1

25
ð�3r1 þ 4r2 þ r4Þ

X

hiji
ðSi � SjÞ: (7)

The NN interaction J1 � ð�3r1 þ 4r2 þ r4ÞJ=25 changes
sign at �0 ’ 0:155, implying a direct AF-FM transition.
However, this turns out to be a premature conclusion

because the vanishing of Hð1Þ
s at �0 makes higher-order

terms in Eq. (6) relevant. Indeed, �0 nicely falls into the
ortho-AF area of the phase diagram in Fig. 2, where the NN
interaction J1 is small and frustrated.
Higher-order terms.—Higher-order terms arise by flip-

ping orbitals from the ground state j0i. Given that V has
nonzero overlap only with states having one or two NN
orbitals flipped from z to x, one finds in second order

Hð2Þ
s ¼ �ð�Þ

j"zj
�X

hhijii
ðSi � SjÞ � 1

2

X

hhhijiii
ðSi � SjÞ

�
; (8)

with �ð�Þ ¼ ðr1 þ 2r2 þ 3r4Þ2=210. Here, hhijii and
hhhijiii stand for NNN and 3NN sites i and j; see
Fig. 4(a) for the origin and sign of these interactions.
Apart from this, the second order also brings the j"zj�1

correction to the Heisenberg interactions of Hð1Þ
s (7),

moving the transition point from �0 to �0 þOð"�1
z Þ.

The NNN AF interaction in Hð2Þ
s (8) alone would give

two quantum antiferromagnets on interpenetrating sublat-
tices [43], but the additional 3NN FM term makes these AF
states more classical than in the 2D Heisenberg model
(Supplemental Material [44]). This ‘‘double-AF’’ configu-
ration is already similar to the ortho-AF phase in Fig. 3.
However, the second order does not explain why the spins
in the ortho-AF phase prefer to be orthogonal on NN
bonds, and we have to proceed to the third order.

FIG. 3 (color online). Schematic view of two nonequivalent
spin configurations (a) and (b) of the classical ortho-AF phase
jAF?i, which cannot be transformed one into the other by lattice
translations. Four spin directions (arrows) correspond to four
spin sublattices: up or down arrows stand for eigenstates of
hSzi i ¼ � 1

2 , whereas right or left arrows stand for hSxi i ¼ � 1
2 .

FIG. 4 (color online). Artist’s views of the effective spin

interactions obtained in (a) second-order Hð2Þ
s , with NNN term

(123) and 3NN term (124), and (b) third-order Hð3Þ
s . The frames

in (a) indicate Heisenberg bonds multiplied along a or b axes
with � sign depending on the bond direction; the dot in the
center stands for an orbital flip in j0i. In (b) the dashed lines
symbolize sums of three spins which enter each effective spin,
SN �ðiÞ and SN ��ðjÞ; the phase factors s� (circles) and their scalar

product are marked with connected frames.
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The third order in Eq. (6) produces many contributions
to the spin Hamiltonian, but we are interested only in
qualitatively new terms comparing to the lower orders.
The terms bringing potentially new physics are the ones
with connected products of three different Heisenberg
bonds (Supplemental Material [44]). The final result is a
four-spin coupling,

Hð3Þ
? ¼ 1

"2z
�ð�Þ�ð�Þ X

hijijj�
ðSi � SjÞðSN �ðiÞ � SN ��ðjÞÞ; (9)

where �� ¼ �� and SN �ðiÞ �
P

���s�Siþ� is an effective

spin around site i in the direction �; see Fig. 4(b). Here,
�ð�Þ ¼ 9ðr1 þ r4Þ=27, � 2 f�a;�bg, and s� ¼ �1 for
� ¼ �b and s� ¼ 1 otherwise. In the limit of two inter-

penetrating classical antiferromagnets, Hð3Þ
? gives the en-

ergy per site, "ð3Þ? 	 "�2
z �ð�Þ�ð�Þð34 cos’Þ2, where ’ is an

angle between the NN spins (Supplemental Material [44]).
This classical energy is minimized for ’ ¼ �=2, which
explains the exotic magnetic order in the ortho-AF phase,
shown in Fig. 3.

Spin-orbital entanglement.—The ground state jAF?i of
Hs (6) is nearly classical, except for small quantum cor-
rections obtained within the spin-wave expansion (see the
Supplemental Material [44]). Thus, one might expect that
the spins are not entangled with orbitals. However, this
argument overlooks that the resulting spins in Hs are
dressed with orbital and spin-orbital fluctuations. Indeed,
within the perturbative treatment we obtain the full spin-
orbital ground state,

j�SOi/
�
1�X

n�0

V n

"n
þ X

n;m�0

V nVm

"n"m
����

�
j�0i; (10)

where V n � jnihnjV , "n are excitation energies and
j�0i � jAF?ij0i is the disentangled classical state

(Fig. 3). The operator sum in front of j�0i dresses this
state with both orbital and spin-orbital fluctuations. When
the purely orbital fluctuations are neglected and density of
spin-orbital defects is assumed to be small, one finds

j�SOi ’ exp

�
� 1

j"zj
X

hijijj�
D�

ij

�
j�0i; (11)

where

D �
ij ¼ f�A�x

i �
x
j þ Bð�x

i þ �x
jÞs�g�s

ij (12)

is the spin-orbital excitation operator on the bond hiji, with
A ¼ 3ðr1 þ r4Þ=26 and B ¼ ffiffiffi

3
p ðr1 þ 2r2 þ 3r4Þ=25. Both

terms in Eq. (12) project on a NN spin singlet, but the first
one flips two NN z orbitals while the second one generates

only one flipped orbital. In short, the exponent e�D=j"zj
dresses the classical ortho-AF state jAF?i in Fig. 3 with the
entangled (spin-singlet and one or two flipped orbitals)
defects; see Fig. 5. The density of such entangled defects
increases when j"zj is decreased towards the PVB phase.
Topological defects.—The order parameter of the ortho-

AF phase has nontrivial topology. The ground state is
degenerate with respect to different orientations of its order
parameter that consist of two orthogonal unit vectors defin-
ing the orientation of each antiferromagnet. The first vector
lives on thewhole sphere S2, but the second one is restricted
to a circle S1 because it is orthogonal to the first. In addition
to spin-wave excitations, this S2 � S1 topology allows for
Skyrmions (textures) [45] and Z2 vortices (hedgehogs) as
two types of topological defects. The hedgehog is stabilized
by the orthogonality of the antiferromagnets. For instance,
when one of them has fixed uniform orientation of its Néel
order in space, the orthogonal orientation of the other one is
free to make a hedgehoglike rotation.
Summary.—We have found surprising noncollinear spin

order that arises from the NN spin-orbital superexchange
when ferromagnetic and antiferromagnetic interactions
almost compensate each other in the 2D KK model away
from orbital degeneracy. It is stabilized by further neighbor
spin exchange generated by entangled spin-orbital fluctua-
tions, which involve spin singlets and orbital flips. A similar
mechanism works in the 3D KK model, where it leads to a
rich variety of spin-orbital phases, to be reported elsewhere.
Finally, we note that magnetic order in spin-orbital sys-

tems may be changed by applying pressure [46]—indeed, a
transition from ferromagnetic to antiferromagnetic order
was observed in K2CuF4 [36,37]. Such a transition is also
found here for a realistic value of � ’ 0:15, and one could
induce it in the antiferromagnetic phase by external mag-
netic field. Whether the antiferromagnetic order could be
noncollinear as predicted here remains an experimental
challenge.
We thank G. Khaliullin, R. Kremer, and B. Normand for

insightful discussions. This work was supported by the
Polish National Science Center (NCN) under Projects
No. 2012/04/A/ST3/00331 (W.B. and A.M.O.) and
No. 2011/01/B/ST3/00512 (J. D.).

FIG. 5 (color online). Artist’s view of the ortho-AF state j�SOi
(10), with spin order (arrows) of Fig. 3 and FOz orbital order
(circles) in the ab plane. The state is dressed with spin singlets
(ovals) entangled with either one or two orbital excitations from
jzi to jxi orbitals (clovers) on NN bonds.
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