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We study the structure of Bogoliubov quasiparticles, bogolons, the fermionic excitations of paired

superfluids that arise from fermion (BCS) pairing, including neutral superfluids, superconductors, and

paired quantum Hall states. The naive construction of a stationary quasiparticle in which the deformation

of the pair field is neglected leads to a contradiction: it carries a net electrical current even though it does

not move. However, treating the pair field self-consistently resolves this problem: in a neutral superfluid, a

dipolar current pattern is associated with the quasiparticle for which the total current vanishes. When

Maxwell electrodynamics is included, as appropriate to a superconductor, this pattern is confined over a

penetration depth. For paired quantum Hall states of composite fermions, the Maxwell term is replaced by

a Chern-Simons term, which leads to a dipolar charge distribution and consequently to a dipolar current

pattern.
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Introduction.—Paired superfluids are among the most
ubiquitous of the many ordered phases of interacting fermi-
ons in two and three dimensions. In condensed matter
settings they include both neutral superfluids such as 3He,
charged superconductors, and now also paired quantum
Hall (QH) liquids such as the Moore-Read or Pfaffian state
that is believed to underlie the quantized Hall plateau at
filling factor � ¼ 5=2 [1]. In all cases paired superfluids
exhibit two distinct excitations that dominate much of their
physics: vortices and Bogoliubov quasiparticles or bogo-
lons. The former are a generic consequence of superfluidity,
but the latter are a particular signature of pairing-they
involve breaking apart a Cooper pair into its fermionic
constituents.

The structure of vortices is well understood: they are the
topological solitons of a complex scalar order parameter in
the Landau-Ginzburg description of a superfluid. In a
superconductor, additional coupling to a Maxwell gauge
field results in an associated quantum of flux, while for a
quantum Hall liquid, coupling to a Chern-Simons gauge
field associates a quantized charge with each vortex. The
structure of bogolons is less well understood as they are, by
comparison, much more quantum mechanical particles.
Wewill address that gap by providing a theoretical analysis
of their structure for all three examples alluded to above.
For superfluids and superconductors we will be able to
recover the heuristic description advanced by Kivelson
and Rokhsar [2]. For paired quantum Hall liquids our
results are new and add to a recent burst of interest in the
properties of bogolons [3,4], including work by four of the
present authors [5].

In the weak pairing (BCS) limit the momentum (or
Bloch) eigenstates of the bogolon exhibit the well known
dispersion relation sketched in Fig. 1(a), with a character-
istic minimum at the underlying Fermi surface. In terms of
these, one can make a localized wave packet state with a
spatial extent large compared to the coherence length, �,
and a well-defined momentum. Unlike a wave packet in the
normal state, this bogolon wave packet has a group
velocity which is different than the Fermi velocity vF,
and which vanishes on the Fermi surface. It has spin 1

2 ,

but its (average) charge is smaller than the charge of
electron e. Both quantities vanish as the momentum of
quasiparticles p approach the Fermi momentum pF. On
the other hand, since the wave packet has a net momentum,
it carries a net current [6] equal to evF. This indicates that
our construction of a localized bogolon is fundamentally
inadequate. The problem becomes especially clear in the
limit p ¼ pF, where the group velocity of the wave packet
is zero. In this case the current density is finite inside the
wave packet and zero outside of it. The resolution of this
puzzle will lead us to a bogolon structure that involves
an algebraically falling, dipolar, return current flow via
the condensate for neutral superfluids, a version of this
screened on the scale of the London length for supercon-
ductors, and a version exhibiting a charge dipole as well as
a locally dipolar backflow for two dimensional quantum
Hall fluids. Altogether, bogolons are fairly complicated
objects!
Bogolon wave packet.—We begin with the mean-field

BCS Hamiltonian for a neutral fully gapped paired super-
fluid which also serves to fix notation,
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The (T ¼ 0) BCS ground state is then the state annihilated

by all the �ks, j�i ¼ Q
k�0ðuk þ vkc

y
k"c

y
�k#Þj0i. Single-

quasiparticle states with momentum k and spin s are given

by jksi ¼ �y
ksj�i and it is readily verified that their energy

Ek is minimal at jkj ¼ kF. We will work in d ¼ 2 as that
naturally includes the case of the paired QH state, but the
results are readily generalized to d ¼ 3.

A quasiparticle wave packet with average momentum

@k0 ¼ @kFk̂0, spin s, and spatial extent �� is obtained by
superposing the states jksi with momenta near k0

j��
k0;s

i ¼
�
�ffiffiffiffi
�

p
�
d=2 Z

ddke�ð1=2Þ�2ðk�k0Þ2 jksi: (3)

In order that the energy uncertainty of the wave packet be
smaller than its average energy, we need to choose � �
� ¼ vF

�0
as can be deduced from the low lying dispersion

relation EðkÞ � �0 þ ½vFk̂0�ðk�k0Þ�2
2�0

where �0 � j�k0
j and

vF ¼ kF=m is the Fermi velocity.
Our primary concern is the structure of quasiparticle

wave packets centered at momenta close to pF, so that
their group velocity is much smaller than vF. Clearly, the
packet has vanishing group velocity at p ¼ pF. However,
a tedious but straightforward computation of the expecta-

tion value of the quasiparticle current operator jqpq ¼P
k;s

k
m c

y
kþq

2s
ck�ðq=2Þs in the state yields [7]

hjqpq i� ¼ vFk̂0e
�ð�2q2Þ4: (4)

We are thus presented with a contradiction: a stationary
quasiparticle wave packet is associated with a current that
has nonzero divergence—violating the continuity equation.
A first step in resolving this puzzle is to observe that we

have taken a slippery step in passing from momentum space
to real space. In real space, the wave packet state (3) is now
inhomogeneous and hence a homogeneous ‘‘pair potential’’
� no longer yields a self-consistent mean field theory of the
wave packet [8]. It is possible to prove that any state that
satisfies the self-consistency conditions respects the equation
of continuity. Recomputing the pair potential in the wave
packet state and then iterating the construction of the wave
packet and the computation of the pair potential should yield
a state that does obey current conservation [9]. In the
Supplemental Material [10], we show that the first iteration
of this process produces a change in the pair potential that
already partially cancels the quasiparticle current.
However, implementing this approach requires detailed

numerical work. Instead, we construct an effective action
which correctly treats the low-energy, long-wavelength
physics in the weak coupling limit, �0 	 EF ¼ k2F=2m.
While portions of this work may be reconstructed from
existing literature, in particular the ‘‘conserving approxi-
mations’’ [11–15] to superconducting response, to our
knowledge an explicit quantitative treatment of a bogolon
wave packet has not been previously presented.
Neutral superfluids.—As we are interested in a wave

packet constructed from momenta very close to the (par-
ent) Fermi surface, it is sufficient that we work with the
effective dynamics for this set of degrees of freedom.
Formally, we begin with a Hubbard-Stratonovich (HS)
decoupling of an attractive four-fermion interaction in
the particle-particle channel, and integrate out fermions
above a cutoff thus generating an effective action for the

HS field, �ðr; tÞ ¼ �0e
i�ðr;tÞ. As we are in the broken-

symmetry phase, fluctuations of the amplitude can be
neglected. The result is an effective theory of dynamical
fermions coupled to a dynamical phase field �ðr; tÞ [16].
To be explicit, we consider the case of s-wave pairing,

where the most important terms in this (well known) theory
are represented by the action S¼R

dtd2rðLc þLpþL�Þ,
with

FIG. 1 (color online). (a) Quasiparticle dispersion. (b) Current flow around neutral superfluid bogolon (window size �2�.)
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L � ¼ ��0

2
ð@t�Þ2 þ ns

2m
ðr�Þ2; (7)

where �0 is the static compressibility (equal to the density
of states at the Fermi surface), and ns is the superfluid
density. At T ¼ 0, ns ¼ 	, the total electronic density, for
the Galilean invariant systems considered here.

Note that the conserved charge is no longer carried
solely by the fermions, but also by the superfluid compo-
nent via twists in the order parameter. A straightforward
application of the Noether procedure allows us to write, for
the density and current

	 ¼ 	qp � �0@t�; j ¼ jqp þ ns
2m

r�; (8)

where 	qp ¼ P
sc

y
s c s and j

qp ¼ P
s
1
m Im½c y

src s�. From
S we then obtain the equations of motion

@t	
qp ¼ �r � jqp þBp; (9)

�0@
2
t � ¼ ns

2m
r2�þBp; (10)

where Bp � 2i�0ðei�c y
" c

y
# � e�i�c #c "Þ is the term

that couples the quasiparticles and the superfluid. From
Eqs. (8)–(10), it is evident that @t	þ r � j ¼ 0, i.e., the
properly defined density and current obey the continuity
equation; it is equally clear that the quasiparticle density is
not independently conserved.

Let us now specialize to the treatment of a stationary
bogolon wave packet in the approximation where we
ignore the quantum fluctuations of �. This implies that
the left-hand side of Eqs. (9) and (10) vanish so that

hr � jqpi ¼ hBpi ¼ � ns
2m

hr2�i: (11)

Thus, in the wave packet state for which hjqpq i� is given by

Eq. (4), the resulting phase texture is

h�qi� ¼ iðq � k̂0Þ
q2

�
2kF
ns

�
e�ð�2q2Þ=4; (12)

which permits us to write for the total current

hjqi� ¼ vF

�
q2k̂0 � ðq � k̂0Þq

q2

�
e�ð�2q2Þ=4: (13)

Equation (13) corresponds to a real space current

hjðrÞi� ¼ ẑ
 r’�ðrÞ, where ’�ðrÞ � 2�vF
ðk̂0
rÞ�ẑ

r2

ð1� e�r2=�2Þ.
The flow pattern is solenoidal (clearly r � hji� ¼ 0),

and decays as r�2 far from the center of the wave packet.

Corrections to this expression at short distances are non-
universal, and are beyond the reach of the field-theory
approach. Finally, we note that at finite quasiparticle con-

centration 	qp, the long-range nature of the distribution of
current density in a quasiparticle wave packet leads to the
conventional expression jqp ¼ evF	

qp for the quasiparticle
contribution to the current density, in agreement with the
Boltzmann approach [17] applicable in this limit.
Superconductors.—We now turn to the case of a charged

superfluid which is minimally coupled to a fluctuatingUð1Þ
Maxwell gauge field A�-i.e., the superconductor with dy-

namical electromagnetism. The effective action is obtained
from that of the neutral superfluid by converting the de-
rivatives to covariant derivatives: @� ! D� ¼ @� � iA�,

where the dynamics of A� are described by LMaxwell ¼
1
4F��F

�� in which F�� ¼ @�A� � @�A� is the Maxwell

field strength. From Sþ SMaxwell, we find the equations of
motion for the quasiparticle and superfluid currents

	¼	qp��0ð@t��2A0Þ; j¼jqpþ ns
2m

ðr��2AÞ;
@t	

qp¼�r �jqpþBp; �0@tð@t��2A0Þ
¼ ns
2m

r � ðr��2AÞþBp; (14)

supplemented by Maxwell’s equations

r �E ¼ 4�ð	� �	Þ; r � B ¼ 0;

r
B ¼ 4�jþ @tE; r
 E ¼ �@tB:
(15)

In (14) and (15) the quasiparticle current and density

take their gauge-invariant forms, 	qp ¼ P
sc

y
s c s and

jqp ¼ P
s
1
m Im½c y

sDc s�, and E ¼ �@tA� rA0 and

B ¼ r
A are the electric and magnetic fields in the
quasiparticle state; in writing the Poisson equation we
have assumed the existence of a neutralizing positive

background �	 ¼ hPsc
y
s c si� in the BCS ground state.

The first comment to be made here is that now even
extended bogolon states of definite momentum do not carry
current. This basically reflects the Meissner effect.
Specifically, the uniform quasiparticle contribution to the
current is exactly canceled by a superfluid backflow, which

in unitary gauge � ¼ 0, corresponds to ns
m A ¼ hjqpi /

vFk̂0 [18]. The correct bogolon state carries no current;
they are neutral particles.
Still in unitary gauge, let us turn to the construction of

the wave packet. For static wave packets we find that the
third equation of (14) yields ns

m r �A ¼ hBpi ¼ hr � jqpi,
so that as before the total current j ¼ jqp � ns

m A is

conserved. Using this, we rewrite the third Maxwell equa-
tion as

½�r2 þ ��2
L �A ¼ 4�hjqp � �2

Lrðr � jqpÞi; (16)

where we have defined the penetration depth via ��2
L ¼

4�ns
m and the expectation value is taken in the naive wave
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packet state with A0 ¼ A ¼ 0. Using either the expecta-
tion value of hBpi computed in the superfluid case or the

form of jqp, we may solve (16) by Fourier analysis:

hjqi� ¼ vF

�
q2k̂0 � ðq � k̂0Þq

q2 þ ��2
L

�
e�ð�2q2=4Þ; (17)

which coincides with (13) in the limit in which the cou-
pling to electromagnetism vanishes (when �L ! 1). It is
easy to see that the power-law asymptotics of the superfluid
case are replaced by exponential behavior at long dis-

tances, jðrÞ � e�r=�L for r � � and �L. This reflects the
fact that superconductors screen magnetic fields and thus
the current pattern is confined to within a penetration depth
of the center of the bogolon [19]. (Note that the short-
distance behavior of the wave packet is qualitatively differ-
ent depending on whether the superconductor is type I (or
weakly type II) in which case �L completely characterizes
the current distribution, or strongly type II, with �0 	
� 	 �L, in which case the bogolon resembles that in a
neutral superfluid for r 	 �L.)

Paired QH states.—Our final example is the case of a
bogolon in a paired QH state of composite fermions (CFs)
[1]. Here, we start with fermions moving in a static uni-
form background field A (where r
A ¼ B), and per-
form a ‘‘flux attachment’’ by means of a statistical gauge
field a whose dynamics are governed by a Chern-Simons
(CS) term, LCS ¼ 1

4�0

��	a�@�a	, with �0 the quantum

of flux. Qualitatively, the role of the CS gauge field is to
attach two quanta of magnetic flux to each electron to
convert it into a CF, which sees zero net flux at half-filling,
i.e., we have B ¼ 2�0 �	. In this case, we replace @� !
D� ¼ @� � iðaþ AÞ�, and change the currents and den-

sities accordingly. Although more properly we should
consider the example of spinless fermions and p-wave
pairing, the distinction is unimportant as we are primarily
interested in the interplay of the CS electrodynamics and
charge conservation, neither of which depends essentially
on the pairing symmetry. The equations of motion now
follow as a result of Sþ SCS: the ‘‘matter’’ equations are
similar to the previous example,

	 ¼ 	qp � �0½@t�� 2ða0 þ A0Þ�;
j ¼ jqp þ ns

2m
½r�� 2ðaþAÞ�;

@t	
qp ¼ �r � jqp þBp; �0@t½@t�� 2ða0 þ A0Þ�

¼ ns
2m

r � ½r�� 2ðaþAÞ� þBp; (18)

but the Maxwell equations are replaced by the CS equa-
tions, which are pure constraints:

b�r
a¼�2�0f	qp��0½@t��2ða0þA0Þ�g;

e��@ta�ra0¼2�0ẑ

�
jqpþ ns

2m
½r��2ðaþAÞ�

�
:

(19)

Note that now, A is not a dynamical field, but rather

represents the background magnetic field, r
A
2�0

¼ �	, where

�	 is the mean density, h	Fi0, in the ground state, and, for
the present, we will set the external potential A0 ¼ 0 [20].
Proceeding to the wave packet state, and specializing to
unitary gauge and to static configurations as in the previous
examples we use the identity r2V ¼ ẑ
 r½r
 V� þ
r½r � V� (valid in d ¼ 2) to write

½�r2 þ ��2
CS �ðaþAÞ ¼ 8�0�

2
0hjqp � �2

CSrðr � jqpÞi;
where ��2

CS ¼ 8�0�
2
0ns

m . The solution for the total field aþA

is similar to (17); observe that the flux is exponentially
screened over a distance �CS. Using �0 � m

2� as appropriate

to a 2D Fermi surface, and the QH relation �	 ¼ 1=4�‘2B
for filling factor � ¼ 1=2 where ‘B is the magnetic length,

we find �CS � 1
2 ‘Bð �	=nsÞ1=2, so for a Galilean invariant

system at T ¼ 0 where ns ¼ �	, we find �CS � 1
2 ‘B. Thus,

the characteristic size of a bogolon wave packet is of order
the magnetic length. A striking difference from the normal
superconductor is that the second CS equation forces the
existence of an electric field, which leads to a deviation of
charge density from the background. The simplest estimate

is �	� 1
‘2B

ðk̂0
rÞ�ẑ
r e�2r=‘B ; while this is not the exact form,

the important point is that there is necessarily a dipolar

charge distribution oriented perpendicular to ~k0, with sepa-
ration �‘B, accompanying the screened dipolar current
pattern. Upon inclusion of the long-range Coulomb inter-
action (ignored so far) [10] both current and charge den-
sities acquire power-law tails similar to those in Ref. [21].
In the QH case, the bogolon has a natural interpretation

as the descendant of the CF in the paired phase. Several
authors, including one of us [22–25], have observed that
upon projection to the lowest Landau level the CF in the
compressible phase goes from being a charged particle to a
neutral particle with a dipole moment proportional to its
speed and perpendicular to its direction of propagation.
The argument for a dipolar charge distribution for the
bogolon presented here—the application of CS electrody-
namics to a paired superfluid—is rather different from
projection to a reduced Hilbert space, and the connection
between the two cases is an intriguing question that we
hope to address in the future. We note that a recent micro-
scopic study [26] reports an excitonic construction of the
quantum Hall bogolon in the Pfaffian state that is also
consistent with an associated dipolar charge distribution.
Concluding remarks.—In this Letter, we have given a

consistent microscopic description of bogolon wave
packets in three broad classes of paired fermion states:
superfluids, superconductors, and paired composite Fermi
liquids with CS electrodynamics. In all cases, the quasi-
particle is associated with a decidedly nontrivial current
flow pattern carried in part by the condensate, and mani-
festly obeys global and/or local conservation laws as
appropriate. Although for pedagogical simplicity we
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focused on the case of stationary wave packets, this restric-
tion is merely a matter of convenience: suitably boosted
current configurations are associated with bogolons in
motion.

Our results are valid in the limit 	qp�2 	 1 when the
concentration of quasiparticle wave packets is small, or in
other words when the distance between quasiparticles is
much larger than their size. In the opposite limit of high
quasiparticle concentration where quasiparticles overlap,
the system can be studied using the kinetic equation
approach [17]. In this formalism, the Boltzmann equation
for the distribution function of quasiparticles nk is
supplemented by equations of motion for the electrody-
namic fields and continuity equations expressing charge
conservation. The current and charge densities take the
form

j ¼ e	vs þ e
Z

ddk
k

m
nk;

	 ¼ e
Z

ddk½u2knk þ v2
kð1� n�kÞ�;

(20)

where vs ¼ 1
2 ðr�� 2AÞ is the superfluid velocity. The

situation is similar to the microscopic scenario discussed
here: in order to describe the distribution of vs, an addi-
tional variable included in the kinetic theory (compared to
the case of the normal metal), charge conservation must be
treated as an independent equation, rather than following
directly from the equations of motion.
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