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We investigate the Casimir effect between two-dimensional electron systems driven to the quantum

Hall regime by a strong perpendicular magnetic field. In the large-separation (d) limit where retardation

effects are essential, we find (i) that the Casimir force is quantized in units of 3@c�2=8�2d4 and (ii) that

the force is repulsive for mirrors with the same type of carrier and attractive for mirrors with opposite

types of carrier. The sign of the Casimir force is therefore electrically tunable in ambipolar materials such

as graphene. The Casimir force is suppressed when one mirror is a charge-neutral graphene system in a

filling factor � ¼ 0 quantum Hall state.
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Introduction.—The Casimir effect is an intriguing quan-
tum electrodynamic phenomenon in which the vacuum
energy of the electromagnetic field is altered by the pres-
ence of two closely spaced mirrors coupled to the field,
resulting in a measurable force between them. The force
between two parallel metal plates, for example, is attractive
because the plates restrict the number of vacuum electro-
magnetic modes present in the space between them.
Growing interest in this fascinating topic has been driven
by improving Casimir force measurement capabilities at
small separations from 1 �m down to about 10 nm [1–4]
and by new materials. When semiconductors like Si are
used as mirrors instead of conventional dielectric materials
andmetals, for example, it is possible to control the Casimir
force by optical or electrical carrier density modulation [5].
This property, combined with recent advances in micro-
electromechanical systems and nanoelectromechanical
systems, could enable new electromechanical applications.

At submicron distances, the Casimir force between
materials usually dominates the gravitational force.
Measurement of the Casimir force has therefore played
an important role in the search for the non-Newtonian
gravitational forces suggested by a number of unification
theories [6]. Because the Newtonian gravitational law has
been poorly tested below 10 �m, an accurate quantitative
understanding of the Casimir effect is key to the identifi-
cation of any new gravitational force law that might prevail
at small length scales. Theories of the Casimir effect have
in fact been employed [7,8] in establishing constraints on
the magnitude of non-Newtonian gravitational effects. In
these studies, measured force values are compared with
known contributions from Newtonian gravity and Casimir
forces computed using a separate set of measurements of
the detailed dielectric properties of the test materials [9].
The Casimir force can be sensitive to unintended variations
in impurity density, degree of surface roughness, and sam-
ple thickness. The errors associated with Casimir force
estimation are therefore difficult to control, and this in
turn crucially limits the precision of bounds placed on

hypothetical gravitational forces. A way to suppress or
even neutralize the Casimir effect at small length scales
is therefore desirable, enabling a more sensitive direct
measurement of gravity.
In this Letter, we address one possibility for suppressing

the Casimir effect by developing a theory of the Casimir
force between two-dimensional (2D) electron systems in
the presence of strong perpendicular magnetic fields. The
development of quantized Landau levels and the associated
quantum Hall effect opens up a new regime for investiga-
tions of the Casimir effect. We show that, in ambipolar
materials like graphene, the Casimir force is electrically
tunable between attractive and repulsive values and that, in
the large-separation relativistic regime, the Casimir force is
quantized. Importantly, a strongly suppressed Casimir
force can be achieved under a high magnetic field by using
charge-neutral graphene sheets as mirrors.
Theory.—When spatial dispersion in the mirrors is neg-

ligible, the Casimir effect is determined by their local
(i.e., q ¼ 0) charge and current response functions.
In this limit, the Casimir energy (per unit area) can be
elegantly expressed in terms of the reflection matrices of
the mirrors [10]

E ¼ @

4�2

Z 1

0
dq?q?

Z q?c

0
d!

� tr ln½I� rLðiq?; i!ÞrRðiq?; i!Þe�2q?d�; (1)

where rL, rR are the reflection matrices of the left (L) and

right (R) mirrors separated at a distance d apart, q? ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið!=cÞ2 � q2
p

is the component of photon momentum
perpendicular to the mirror planes, and q is the in-plane
momentum component. It is worthwhile to emphasize that
Eq. (1) includes contributions from both electromagnetic
propagating and evanescent modes [10].
We apply Eq. (1) to mirrors made of ultrathin films that

can be adequately modeled as a quasi-2D layer; this class
of systems includes atomically thin materials like graphene
and bilayer graphene [11]. Several groups have studied the
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Casimir force between graphene sheets in the absence of
an external magnetic field [12]. When a field is present,
the optical characteristics of a 2D mirror depend on its
longitudinal �xx and Hall �xy conductivities, where x

corresponds to the direction parallel and y perpendicular
to the plane of incidence. For the general angle of inci-
dence �, straightforward calculations yield [13] the follow-
ing expressions for the components of the 2� 2 reflection
matrix of a 2D mirror:

rxx ¼ �2�f ��xxð!Þ=�þ 2�½ ��2
xxð!Þ þ ��2

xyð!Þ�g=R;
rxy ¼ �ryx ¼ �2� ��xyð!Þ=R;
ryy ¼ �2�f ��xxð!Þ�þ 2�½ ��2

xxð!Þ þ ��2
xyð!Þ�g=R;

(2)

where � ¼ cos� ¼ q?=ð!=cÞ, R¼1þ2� ��xxð�þ1=�Þþ
4�2½ ��2

xxþ ��2
xy�, and ��xx;xy ¼ �xx;xy=c are dimensionless

optical conductivities normalized by c.
We now apply a strong magnetic field normal to two

parallel 2D mirrors that are separated by a distance d.
When d=c is larger than characteristic electronic time
scales, the retardation effects captured by Eq. (1) are
essential. In the quantum Hall regime characterized by
well-resolved Landau levels � � � (where � is the char-
acteristic energy for inter-Landau-level transitions and
� & 1–10 meV, the typical disorder broadening energy),
the large d limit holds for d=c * @=�. For graphene,

� � @v=lB ¼ 25:78
ffiffiffiffiffiffiffiffiffiffi
B½T�p

meV where v¼106 ms�1 is

the band velocity in graphene and lB ¼ ffiffiffiffiffiffiffiffiffiffiffi
@=eB

p
the mag-

netic length, d * 7:71=
ffiffiffiffiffiffiffiffiffiffi
B½T�p

�m. Due to the exponential
dependence on d in Eq. (1), electromagnetic corre-
lations between mirrors separated by large distances are
carried by long-wavelength virtual photons; the integral in
Eq. (1) is therefore dominated by low-frequency contribu-
tions. The value of the Casimir energy is thus determined
at large separations by the static longitudinal and Hall
conductivities �xx;xyð! ¼ 0Þ. If the applied magnetic field

is strong enough that the mirrors sit on well-formed
quantum Hall plateaus, then the low-frequency longitudi-

nal conductivity vanishes ��L;R
xx ’ 0 and the Hall conduc-

tivity ��L;R
xy ’ �L;R�=2�, where � ¼ 1=137 is the fine

structure constant and �L;R ¼ 2�@nL;R=ðeBÞ are the

Landau-level filling factors of the left and right mirrors
with carrier density nL;R. Performing the frequency

and momentum integrations in Eq. (1), we obtain the
following closed-form analytic result for the Casimir en-
ergy E¼�ð@c=8�2d3ÞReðLi4f½��L�R�

2ð1��L�R�
2Þþ

ij�Ljj�Rjj�Lþ�Rj�3�=½ð1þ�2
L�

2Þð1þ�2
R�

2Þ�gÞ, with Re
denoting the real part and LinðzÞ the polylogarithm func-
tion of order n. Expanding the expression in �2 � 1, we
obtain the leading contribution to the Casimir force per unit
area F ¼ �@E=@d between two quantum Hall mirrors

F ¼ 3@c

8�2
�2 �L�R

d4
: (3)

Equation (3) is a central result of this Letter. The integer
and fractional quantum Hall effects are characterized
by remarkably flat plateaus in the Hall conductivity at
discrete integer and small-denominator fractional multi-
ples (i.e., filling factor �) of e2=h. Therefore, we conclude
that, under quantum Hall conditions, the large-separation
asymptotic Casimir force will be approximately quantized
in integer or fractional multiples of 3@c�2=8�2d4. Higher-
order corrections to Eq. (3) are �Oð�4Þ and negligible.
Comparing with the well-known result between perfect
metals F0 ¼ �@c�2=240d4, one notices that the Casimir
force is suppressed by a factor / �2.
It is also informative to understand Eq. (3) from the

perspective of quantum electrodynamic perturbation the-
ory in which the Casimir effect arises from mutual elec-
tromagnetic correlations between two separated systems
and therefore contributes to the ground state [14–16]
energy of the coupled system. In the following, we adopt
the axial gauge with a zero electromagnetic scalar potential
� ¼ 0. The longitudinal (photon momentum parallel to
vector potential) Dl and transverse (photon momentum
perpendicular to vector potential) Dt interlayer photon
propagators [17] are given as a function of mirror separa-
tion by Dlðq?; !Þ ¼ �ð2�icq?=!2Þ expðiq?dÞ and
Dtðq?; !Þ ¼ �½2�i=ðq?cÞ� expðiq?dÞ. In the absence of
a magnetic field, the longitudinal contribution to the inter-
action energy is given to leading order in � by the diagram
in Fig. 1(a),

El ¼ �@

Z d!

2�

X
q

�L
l Dl�

R
l Dl; (4)

(a)

= +

(c)

(b)

FIG. 1 (color online). Feynman diagrams for the ground
state correlation energy between mirrors, where green wavy
lines represent the photon Green function D and filled blue
bubbles represent the current-current correlation function �.
(a) Leading-order diagram for the longitudinal contribution El

to the ground state correlation energy. The transverse contribu-
tion Et is given by replacing Dl, �l ! Dt, �t. (b) Leading-
order diagram for the Hall contribution EH; this diagram is to be
counted twice because an equivalent diagram results from inter-
changingDl andDt and using�H ��xy¼��yx. (c) Diagram

for the current-current correlation function. The first diagram on
the right represents the diamagnetic contribution, whereas the
second represents the paramagnetic contribution.

PRL 109, 236806 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

7 DECEMBER 2012

236806-2



where �L;R
l is the longitudinal component of the current-

current correlation tensor of the mirrors. By virtue of the
continuity equation for charge density, the longitudinal
current-current correlation function is related to the
density-density correlation function 	 by �lðq;!Þ ¼
ðe!=qÞ2	ðq;!Þ. Equation (4) therefore describes the
leading-order contribution to the Casimir effect due to
fluctuations of charge density. Because �l / �xx is inde-
pendent of the sign of charge carriers, the Casimir force
between two parallel-plate mirrors placed in vacuum is
attractive for like or unlike carrier densities. The transverse
interaction energy Et gives a comparable contribution to

Eq. (4) with integrand �L
t Dt�

R
t Dt, where �L;R

t is the
transverse component of the current-current correlation
tensor.

When a magnetic field is present, the Casimir energy
acquires a contribution that depends on the Hall current-
current correlation function �Hðq;!Þ, for which the
leading-order diagram [Fig. 1(b)] yields

EH ¼ 2@
Z d!

2�

X
q

�L
HDt�

R
HDl: (5)

Expressed in terms of the Hall conductivity, �H ¼
�i!�xy in Eq. (5). Changing the integration variable

from the in-plane momentum component q to the perpen-
dicular component q? and performing the complex plane
rotations [10] q? ! iq? and ! ! i!, we obtain

EH ¼ 2@

c2

Z 1

0
dq?q?

�
Z q?c

0
d!�L

xyðiq?; i!Þ�R
xyðiq?; i!Þ�2q?d; (6)

showing that the Hall contribution EH depends on the
product of the Hall conductivities of the two mirrors and
is therefore sensitive to the signs of their charge carriers.
To leading order in �, the Casimir energy in a magnetic
field is given by the sum of these three contributions,
E ¼ El þ Et þ EH.

When the magnetic field is strong, Landau quantization
of the electronic energy spectrum of the mirror leads to
energy gaps �. We confine our discussion to low tempera-
tures kBT � @c=d & �, at which the quantum Hall effect
is established and thermal contributions to the Casimir
force can be ignored. In this limit, density fluctuations
and hence the longitudinal and transverse contributions
to the Casimir energy are suppressed because the 2D
quantum Hall systems are incompressible [18]. Hence,
Hall-like quantum fluctuations of the current dominate.
Evaluating the Hall energy in Eq. (6), we can rederive
the Casimir force result Eq. (3) obtained earlier from
macroscopic electrodynamic considerations.

Repulsive Casimir effect.—Repulsive Casimir forces are
unusual and have been realized for the first time in recent

experiments involving test bodies immersed in a liquid
medium [19]. An important implication of Eq. (3) is that
repulsive Casimir forces can be easily obtained in ambi-
polar 2D quantum Hall systems by gating them to like-sign
carrier densities. We demonstrate this repulsive Casimir
effect by considering the case of two graphene sheets,
numerically evaluating the Casimir force F ¼ �@E=@d
from the Casimir energy E given by Eqs. (1) and (2). We
obtain the graphene sheet’s optical conductivity tensor
from the Kubo formula [20]. Figure 2 shows the calculated
Casimir force versus d between (1) an electron-doped
graphene sheet and a hole-doped graphene sheet [grey
(red) curve] and (2) between two electron-doped graphene
sheets [dark (black) curve]. The plot is normalized by
the Casimir force between two perfect metals F0 ¼
�@c�2=240d4. For small separations, the Casimir force
is attractive for both cases. For separations large enough
that retardation effects are important however, contribu-
tions from charge density fluctuations are exponentially
suppressed, Hall current fluctuations gain dominance, and
repulsive forces can appear. Our numerical results for both
cases settle onto the values predicted by the analytic result
Eq. (3) beyond a threshold separation, dQH. For d > dQH,
we find Casimir attraction for opposite-sign carrier
densities and repulsion for like-sign carrier densities. The
crossover length dQH can be estimated by expanding

Eq. (1) to one higher-order term in 1=d and � beyond
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FIG. 2 (color online). Casimir force F normalized by the
perfect metal value F0 ¼ �@c�2=240d4 as a function of sepa-
ration d in a strong magnetic field. Solid lines correspond to
numerical results, and dashed lines correspond to the analytic
large d limit in Eq. (3). The case with opposite-sign carrier
densities on the two graphene sheets nL ¼ 1:2� 1012 cm�2 ¼
�nR is depicted by the red (grey) curve, whereas the case with
the same-sign carrier density nL ¼ nR ¼ 1:2� 1012 cm�2 is
depicted by the black (dark) curve. At these carrier densities,
the magnetic fields B ¼ 25, 8.3 T correspond to filling factors

j�j ¼ 2, 6. These calculations are valid for d � lB, where lB ¼
257=

ffiffiffiffiffiffiffiffiffiffi
B½T�p

�A is the magnetic length, and weak disorder.
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the limit given by Eq. (3). We find [20] that dQH *
lBðc=vÞfð�L; �RÞ, where fð�L; �RÞ is a monotonic
increasing function of �L;R / 1=B of orderOð1Þ, consistent
with the estimate obtained from the criterion of the long-
distance regime d=c * @=�. In agreement with numerical
results in Fig. 2, dQH decreases with magnetic field.

Casimir force quenching.—We have shown that the
asymptotic Casimir force between 2D quantum Hall insu-
lators follows the same power law as the Casimir force for
ideal thick metals but is weaker by a factor of
�4�L�R�

2=90, where � is the fine structure constant. At
the same time, it is qualitatively stronger than the Casimir
force between ordinary 2D insulators, which falls off espe-
cially rapidly (like d�6) at large distances. For the special
case of charge-neutral graphene in a � ¼ 0 quantum Hall
state [21], the leading Hall contribution Eq. (3) to the
Casimir force vanishes and the system behaves like an
ordinary 2D insulator, with the Casimir force given asymp-

totically at large d by F ¼ �9@c�L0
xxð0Þ�R0

xxð0Þ=2d6, where
the prime denotes a derivative with respect to frequency
[20]. Figure 3(a) shows the calculated Casimir forces
between two parallel charge-neutral graphene sheets as a
function of magnetic field strength. The force value is
substantially suppressed for large separations d * 10 �m
at a typical field strength of 10 T, indicating that the
relativistic-regime Casimir force is quenched by strong
magnetic fields. In this regime, we find Ref. [20] that

F ¼ � 9@c3

4�2d6
�2

�
lB
v

�
2
�
1

2
þ hð1Þ

�
2
; (7)

where hðnÞ ¼ P1
m¼n 1=ð

ffiffiffiffi
m

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

p Þ3 and hð1Þ � 0:25.
For d ’ 10–100 �m, F is suppressed by �10�8–10�10

compared to the ideal metal value F0.
Because of experimental difficulties in maintaining pre-

cise parallelism between two plates, it is common in
Casimir force measurements to replace one of the plates
by a sphere to mimic the parallel-plate geometry at the
point of closest separation. It is therefore essential to
ascertain whether the quenching effect of the Casimir force
also survives under this geometry. When the sphere radius
R � d, the proximity force approximation [22] provides
an accurate determination of the Casimir force as F ¼
2�RE, commensurate with the Casimir energy E per unit
area in the same geometry with R ! 1 (i.e., a plate
interacting with an infinite half-space). To capture the
behavior of the Casimir force in the sphere-plate geometry,
we have therefore numerically computed the Casimir en-
ergy between a charge-neutral graphene sheet and a dielec-
tric half-space, as shown in Fig. 3(b). The Casimir energy
again drops rapidly, and does so at a larger value of d due to
the higher opacity of the dielectric region. The quenching
effect of the Casimir force should therefore remain observ-
able in a sphere-plate geometry with a charge-neutral
graphene sheet in the � ¼ 0 quantum Hall state.
The strong quantumHall effects of graphene 2D electron

systemsmight be attractive for circumstances where aweak
Casimir force is desirable, such as in experimental tests of
the short-distance gravitational law. The � ¼ 0 state in
particular has the exceptionally weak Casimir force char-
acteristic of 2D insulators. The quantumHall effect can also
be used to gate the graphene sheet accurately to charge
neutrality, ensuring that electrostatic forces are absent.
In conclusion, we find that the large-separation Casimir

force asymptote is quantized in the quantum Hall regime
and that in ambipolar systems it can be tuned electrically
between attractive and repulsive values. When one of the
mirrors is charge neutral, strong suppression of the Casimir
effect can be achieved. Our findings suggest that the use of
two-dimensional electronically gapped materials offers a
new strategy for control of the Casimir effect.
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[4] R. S. Decca, D. López, E. Fischbach, G. L. Klimchitskaya,

D. E. Krause, and V.M. Mostepanenko, Phys. Rev. D 75,
077101 (2007).

0

1

2

3

4

5
F 

/ F
0   

(1
0-3

) B = 10 T
20 T
30 T

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

d   (m)

0
1
2
3
4
5

E
 / 

E
0   

(1
0-3

)

FIG. 3 (color online). (a) Casimir force versus separation for
magnetic field strengths B ¼ 10, 20, 30 T between two charge-
neutral graphene sheets. (b) Casimir energy between a charge-
neutral graphene sheet and a half-space composed of an insulator
with a dielectric constant 
, normalized by the perfect metal
value E0 ¼ �@c�2=720d3. In the large d regime where the
suppression effect becomes prevalent, the insulator is character-
ized by its low-frequency dielectric behavior, and we take 
 ’ 4,
corresponding to SiO2 or hexagonal boron nitride (h-BN).

PRL 109, 236806 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

7 DECEMBER 2012

236806-4

http://dx.doi.org/10.1103/PhysRevA.62.052109
http://dx.doi.org/10.1103/PhysRevA.62.052109
http://dx.doi.org/10.1103/PhysRevA.62.062104
http://dx.doi.org/10.1126/science.1057984
http://dx.doi.org/10.1103/PhysRevD.75.077101
http://dx.doi.org/10.1103/PhysRevD.75.077101


[5] G. L. Klimchitskaya, U. Mohideen, and V.M.
Mostepanenko, Rev. Mod. Phys. 81, 1827 (2009); G. L.
Klimchitskaya, U. Mohideen, and V.M. Mostepanenko,
Int. J. Mod. Phys. B 25, 171 (2011).

[6] See, for example, E. Fischbach and C. L. Talmadge, The
Search for Non-Newtonian Gravity (Springer, New York,
1999); J. C. Long, H.W. Chan, and J. C. Price, Nucl. Phys.
B539, 23 (1999); J. C. Long and J. C. Price, C.R. Physique
4, 337 (2003).E. G. Adelberger, B. R. Heckel, and A. E.
Nelson, Annu. Rev. Nucl. Part. Sci. 53, 77 (2003); R.
Onofrio, New J. Phys. 8, 237 (2006); I. Antoniadis et al.,
C.R. Physique 12, 755 (2011).

[7] V.M. Mostepanenko and Y. Sokolov, Phys. Lett. A 125,
405 (1987); V.M. Mostepanenko and Y. Sokolov, Phys.
Lett. A 132, 313 (1988).
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