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We characterize the Mott-insulator and Luther-Emery phases of the 1D Hubbard model through

correlators that measure the parity of spin and charge strings along the chain. These nonlocal quantities

order in the corresponding gapped phases and vanish at the critical point Uc ¼ 0, thus configuring as

hidden order parameters. The Mott insulator consists of bound doublon-holon pairs, which in the Luther-

Emery phase turn into electron pairs with opposite spins, both unbinding at Uc. The behavior of the parity

correlators is captured by an effective free spinless fermion model.
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The Hubbard model and its extensions have been widely
used to investigate the behavior of strongly correlated
electrons in several condensed-matter systems ranging
from Mott insulators (MI) to high-Tc superconducting
materials. Recently, progress in ultracold gas experiments
that use fermionic atoms trapped in optical lattices has
opened the way to the direct simulation of the Hubbard
model and the observation of the predicted MI phase [1].
Since the Mott transition in one dimension (1D) is known
to be of Berezinskii-Kosterlitz-Thouless (BKT) type [2],
the order parameter cannot be local; instead, the transition
point should correspond to the vanishing of some topo-
logical order. On general grounds, it was shown that the
vanishing of conductivity can be related to the nonvanish-
ing of nonlocal quantities [3–6]. Nevertheless, an order
parameter for solely the MI phase has not yet been iden-
tified. Progress has been achieved in the related field of the
bosonic Hubbard models, where the correspondence of the
bosonic system with spin-1 Hamiltonians at low energy
near integer filling has allowed characterization in 1D MI
and Haldane insulator phases by means of nonlocal string
parameters [7–10]. One of these is related to the parity

correlator OPðrÞ ¼ he2i��iþr
j¼iSz;ji, with Sz;i ¼ 1

2 ðni � �Þ
measuring the parity of the deviation of the occupation
number ni with respect to the filling � in a string starting
from the site i, ending to the site iþ r. The nonvanishing
value of the parity parameter OP ¼ limr!1OPðrÞ in the
insulating phase has been observed with in situ imaging in
experiments on ultracold bosonic 87Rb atoms [11].

In this Letter, we show that two parity string correlators
work as order parameters for the two gapped phases of the
fermionic Hubbard model in 1D. In this case, the expected
role of antiferromagnetic (AFM) correlations has so far
driven the attention mainly to the study of Haldane-type
string correlators; these were found to vanish algebraically,
together withOPðrÞ in the Luttinger liquid regime [12]. On
the other hand, at half-filling in the large Coulomb repul-
sion limit the Hubbard Hamiltonian is known to reduce to
the AFM Heisenberg Hamiltonian, for which the parity

string correlator is identically 1, the wave function being
frozen to the sector with only one electron per site. At finite
Coulomb repulsion instead, in the MI phase the number of
doubly occupied sites (doublons) and empty sites (holons)
is nonvanishing (as also observed experimentally [1]).
Hence, an appropriate parity parameter should characterize
the transition from the Heisenberg to the Luttinger liquid
limit, marking the existence of the whole MI phase.
The local four-dimensional vector space on which an

electron Hamiltonian acts is typically generated by appli-
cation to the vacuum operators forming a su(4) algebra,
with three Cartan generators. Consequently, we can intro-

duce two independent parity correlators Oð�Þ
P , defined as

Oð�Þ
P ðrÞ ¼

D
e
2i�

P
iþr
j¼i

Sð�Þz;j

E
; (1)

with index � ¼ c, s, namely, the ‘‘charge’’ and ‘‘spin’’

generalizations of the parity correlator OPðrÞ. Here, Sð�Þz;i

are the spin and pseudospin operators defined respectively

as SðsÞz;i ¼ 1
2 ðni;" � ni;#Þ and SðcÞz;i ¼ 1

2 ðni;" þ ni;# � 1Þ, with
ni� ¼ cyi�ci�, � ¼ " , # , cyi� creating a fermion at site i
with spin �. By means of bosonization and density matrix
renormalization group (DMRG) analysis, we will show

that each Oð�Þ
P orders in the corresponding gapped phase:

MI for � ¼ c, with open charge gap, and Luther-Emery

(LE) for � ¼ s, with open spin gap. The Oð�Þ
P vanish with

the gap at the BKT transition point where the correlation
length becomes infinite. Notice that the two parameters
collapse into a single one in the spin-1 case.
The Hubbard model is described by the Hamiltonian

H ¼�X
i�

ðcyi�ciþ1;�þcyiþ1;�ci�ÞþU
X
i

ni"ni# (2)

where the overlap integral U gives the on-site contribution
of Coulomb repulsion and energy is expressed in units of
the tunneling amplitude.
The bosonized form of the half-filled Hubbard

Hamiltonian at low energy is known to give rise to two
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continuum models separately describing the spin and
charge sectors [2]. The latter is described by the
Hamiltonian

Hc ¼
Z

dx

�
vc

2�

�
Kc��

2
c þ 1

Kc

ð@x�cÞ2
�

� 2U

ð2��Þ2 cosð ffiffiffi
8

p
�cÞ

�
(3)

with

vc ¼ vF

�
1þ U

�vF

�
1=2

; Kc ¼
�
1þ U

�vF

��1=2
: (4)

Here, �c is the compactified boson describing the charge
excitations with velocity vc, and �c ¼ @x�c=� is its
conjugate momentum (� is a cutoff). At the BKT transition
pointU ¼ 0, we haveKc ¼ 1. The bosonic field in the spin
sector �s is governed by equations that can be obtained
from Eqs. (3) and (4) by replacing U ! �U and c ! s.

The spin-charge transformation cj# ! ð�1Þjcyj#, which

implies SðcÞz;j ! SðsÞz;j, in the present bosonization analysis

corresponds simply to the change �c $ �s. In fact, we
have used the continuum prescriptions used in

Ref. [2] where SðsÞz ðxÞ ¼ @x�sðxÞ=ð
ffiffiffi
2

p
�Þ and SðcÞz ðxÞ ¼

@x�cðxÞ=ð
ffiffiffi
2

p
�Þ.

For U > 0, we get Ks > 1: the cosine term in Hs is
(marginally) irrelevant, and the spin excitations are gapless
and governed by an ordinary Gaussian model. Meanwhile,
Kc < 1, and a charge gap is generated by the relevant
cosine term inHc. As a consequence, the field�c is pinned

in one of the classical minima of the cosine term, i.e.,�c ¼
ð2�mÞ= ffiffiffi

8
p

, m 2 Z, while �s does not order. For U < 0,
just the same occurs with inverted roles �c $ �s. In the
continuum limit, one can realize that the parity operators
become [9,13]

Oð�Þ
P ðrÞ � hcos½

ffiffiffi
2

p
��ðrÞ� cos½

ffiffiffi
2

p
��ð0Þ�i:

Hence, in the MI phase at U > 0, OðcÞ
P turns out to be

nonvanishing. In the U < 0 case instead the LE phase is

characterized by nonzero OðsÞ
P . The two Haldane-type

string correlators

Oð�Þ
S ðrÞ ¼

D
Sð�Þz;i e

2i�
P

iþr
j¼i

Sð�Þz;j Sð�Þz;iþr

E

give insteadOð�Þ
S ðrÞ � hsin½ ffiffiffi

2
p

��ðrÞ� sin½
ffiffiffi
2

p
��ð0Þ�i, where

the same argument suggests that these are both asymptoti-
cally vanishing in the two gapped phases. From the above
derivation, we can conjecture that a necessary and sufficient
condition for having an asymptotically nonvanishing charge
(spin) parity correlator in the Hubbard model is the opening

of a gap in the charge (spin) sector, so thatOð�Þ
P do configure

as order parameters for the gapped phases of the Hubbard
model.

Below, we support our previous argument providing a
quantitative estimation of the parity string parameter in
the MI phase. This is achieved by means of numerical
analysis using the DMRG algorithm on finite size chains
with periodic boundary conditions (PBCs). The analysis
requires very precise and reliable data; in fact, the comput-
ing effort is significant due to both the slowdown caused
by PBCs and the high sensitivity of the correlations con-

tained in Oð�Þ
P ðrÞ with respect to numerical errors. Hence,

we have chosen to consider chain sizes from L ¼ 10 to

L ¼ 50 and 1024 DMRG states. The curves of OðcÞ
P ðrÞ

plotted in Fig. 1 for L ¼ 50 clearly make evident a fast
convergence to the asymptotic values for high interactions
as well as a progressive increase of the parity order withU.
The presence of two sequences for even and odd r that tend
toward the same asymptotic limit also signals that the spin

parity correlator OðsÞ
P ðrÞ ¼ ð�1ÞrOðcÞ

P ðrÞ has a uniform part

½OðsÞ
P ð2rþ 1Þ þOðsÞ

P ð2rÞ�=2 that goes smoothly to zero for
U > 0. The opposite mechanism holds for negative values
of the interaction.
Exactly at U ¼ 0 both parity orders are absent and

OðcÞ
P ðrÞ ¼ OðsÞ

P ðrÞ as required by the spin-charge symmetry.

Here, an analytic calculation of Oð�Þ
P ðrÞ can be performed

independently for both spin species by using the Wick
theorem and evaluating Toeplitz determinants. An

estimation of the asymptotic behavior gives OðcÞ
P ðrÞ � r�1

at U ¼ 0 [14].

We have explicitly evaluated the order parameter OðcÞ
P in

the MI phase and plotted it in Fig. 2 for several values ofU.
The asymptotic values have been extrapolated from the

finite-size scaling of the quantity OðcÞ
P ðL=2Þ in a periodic

chain of length L. For the fits, we have made use of

functionsOPðrÞ ¼ OP þ Ar��e�r=� obtaining a good con-
vergence. Interestingly, as evidenced in the inset of Fig. 2,
for small U we get � ¼ 1 and A > 0, and for strong
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1

FIG. 1 (color online). Parity correlator OðcÞ
P ðrÞ for a periodic

chain with L ¼ 50 as a function of the string length r. The
sequences of data refer to U ¼ 0:1, 1.0, 2.0, 3.0, 5.0, 10.0
(in ascending order).
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interactions we obtain � ¼ 1=2 and A < 0; for intermedi-
ate values, the best fit seems to be a combination of the two
functions.

The nonvanishing of OðcÞ
P implies the existence of bound

doublon-holon pairs (see Ref. [9]); their correlation length
increases by decreasing U becoming infinite at the transi-
tion, when pairs finally unbind. The quasi-long-range AFM
order of the MI phase suggests that such pairs
are diluted in an AFM background of single electrons.
The spin-charge transformation that maps positive U
Hamiltonian at half-filling into negative U case at zero
magnetization allows one to extend the same type of analy-
sis to the LE phase, which is then characterized at any filling
by bound pairs of single electrons with opposite spins.

On the basis of the above scenario, we construct an
approximation scheme that aims at isolating the relevant
degrees of freedom (charges) to describe the actual role of

Oð�Þ
P in the Hubbard model. Since the operator ei�nj ¼

ð�1Þnj changes sign whenever the site j is singly occupied,
no matter its spin orientation, we choose to represent the

original electronic creation operators cyi� in terms of a

spinless fermion fyi and Pauli operators �a
i , a ¼ x, y, z

acting on a spin part. The mapping, schematized in Table I,
is identified by the unitary transformation

cyi" ¼ cyi"ð1� ni#Þ þ cyi"ni# ¼ fyi Pþ
i þ ð�1ÞifiP�

i ;

cyi# ¼ cyi#ð1� ni"Þ þ cyi#ni" ¼ ½fyi � ð�1Þifi���
i ;

with P�
i ¼ 1��z

i

2 . Interestingly, the interaction term for the

c fermions simply becomes a chemical potential shift for f

fermions, namely, U
P

ini"ni# ¼ UðN �P
in

f
i Þ=2, where

N ¼ P
i;�ni�. According to this picture, the spin and pseu-

dospin operators are SðsÞ
j ¼ fyj fj�j and SðcÞ

j ¼ fjf
y
j �j;

conversely, we have �j ¼ Sj þ Jj.

After the mapping, the model in Eq. (2) becomes

H ¼ �X
hiji

h
fyi fjQij � 2ð�1Þifyi fyj Rij þ H:c:

i

þU

2

�
N �X

i

fyi fi
�
; (5)

where Qij ¼ ð�i � �j þ 1Þ=2 is just the swap operator in

the �-spin state and Rij ¼ ð1� �i � �jÞ=4 is the projector
onto the singlet. Notice that Eq. (5) is invariant under
global �-spin rotations.
The form (5) for the Hubbard model holds in arbitrary

dimension, and its terms are quadratic with respect to f

fermions. Since Oð�Þ
P can be entirely expressed in terms of

fi, a possible strategy consists of tracing out the � spins by
some mean-field approximation. In fact, by exploiting the
symmetries of the Hubbard model one can easily realize
that hQiji ¼ 1=2 is an exact identity on the states with

nonvanishing hopping term in (5). Moreover, we set the
parameter � � hRiji in a phenomenological way by equat-

ing the ground-state (GS) energy obtained from the spin-
less quadratic model with the exact energy coming from
the Bethe-ansatz solution [15]. Within this approximation,
Eq. (5) is diagonalized in Fourier space (see Supplemental
Material [16]), obtaining

H ¼ X
k2BZ

�k

�
�y
k�k � 1

2

�
þUð2N � LÞ

4
;

with spectrum �k ¼ � coskþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16�2cos2kþU2=4

p
,

and where �k are the new fermionic modes. In the
thermodynamical limit (TL), the energy density
eGS at half-filling � ¼ 1 is given by eGS¼U

4�
1
2�

R�=2
��=2dk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16�2cos2kþU2=4

p
. It is interesting to observe

that the model is gapless only for U ¼ 0, where for � ¼ 1
eGS assumes the exact value of the noninteracting case.
For U > 0, the number of singly occupied states �f is

increasing and the pair-singlet states start to interact.
We are interested in calculating the parity operator

OðcÞ
P ðrÞ ¼ hei��iþr

j¼iðnfj�1Þi that can be rewritten as
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FIG. 2 (color online). Charge parity order parameter measured

at half chain OðcÞ
P ðL=2Þ as a function of the local interaction U.

We have considered PBCs and finite chain lengths from L ¼ 10
to L ¼ 50 in steps of 4, a sequence for which the ground state of
the Hubbard model is unique. We have plotted the curves for
L ¼ 10 (up triangles), L ¼ 14 (circles), L ¼ 18 (down tri-
angles), L ¼ 26 (rhombuses). The filled squares represent the
finite size scaling values to L ¼ 1 obtained by the fits shown in
the inset.

TABLE I. Mapping from electrons to spinless fermions and
� spins.

Spinful fermion j0i j "i j #i j "#i
Spinless fermion � � spin j0ijþi j1ijþi j1ij�i j0ij�i
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OðcÞ
P ðrÞ ¼

�Yiþr

j¼i

ð2fyj fj � 1Þ
	
¼

�Yiþr

j¼i

AjBj

	
;

having defined Aj ¼ ðfyj þ fjÞ and Bj ¼ ðfj � fyj Þ. By
use of the Wick theorem, OðcÞ

P ðrÞ can be expressed as a
determinant [17]

OðcÞ
P ðrÞ¼


































G0 G1 G2 ��� Gi;iþr

�G1 G0 �G1 ���
G2 G1 G0 ���
..
. ..

. ..
. . .

. ���
Giþr;i

..

.
G0


































¼detðGÞ: (6)

whereG is a block Toeplitz matrix of dimension ðrþ 1Þ 	
ðrþ 1Þ, whose entries are the one-body correlation func-

tions Gr ¼ hðfyj � fjÞðfyjþr þ fjþrÞi, whose expressions

in the TL are

Gr ¼

8>><
>>:

U
2�

R
�
0 dk cosðkrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16�2cos2ðkÞþU2=4
p ; r even

ð�1Þj 4��
R
�
0 dk cosðkrÞ cosðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16�2cos2ðkÞþU2=4
p ; r odd

with the property that G0 ¼ 2�f � 1, Gr ¼ 2Reðhfyj fjþriÞ
for r even, and Gr ¼ 2Reðhfyj fyjþriÞ for r odd. The blocks
in (6) are of size 2	 2. We must distinguish the cases of r
even or odd, since they give rise to two different sequences.
In particular, here we stick to the case r odd, where the
block matrix is of even dimension.

The analytical calculation of OðcÞ
P in the TL for some

values of U in the f-fermion approximation yields to the
curve plotted in Fig. 3, providing evidence for the expected
nonvanishing of the charge parity order for U > 0.
The parameter � has been determined by requiring
eGSðU;�Þ ¼ eexðUÞ, where eex is the exact result [15].
Remarkably, such equality admits a solution for every U,
which belongs to a narrow interval below � ¼ 1, as shown
in the inset of Fig. 3. This means that in the pair-creation
processes in Eq. (5), the �-spin state is very close to the
singlet. In the limit U 
 1, the energy becomes eGSð�Þ �
�4�2=U that gives �ðU ! 1Þ ¼ ffiffiffiffiffiffiffiffiffi

log2
p � 0:83, by com-

parison with the energy density of the Heisenberg model
coming from the large-U expansion of the Hubbard model

at � ¼ 1. The result for OðcÞ
P is also quantitatively in

accordance with the DMRG data in the large U region,
where our assumptions on the AFM nature of short-ranged
correlations [18] are more justified.

In conclusion, our work unveils that two (charge and
spin) parity string correlators are the order parameters for
the gapped phases of the 1D Hubbard model. In the bo-
sonization approach, these are found to be asymptotically

finite only in the corresponding gapped MI and LE phases
and vanish with the gap at the BKT transition point. The
result is cleanly confirmed by DMRG numerical analysis.

The quantity OðcÞ
P characterizes the MI as a phase in which

bound pairs of doublons and holons move in an AFM
background of single electrons. In the LE regime, the roles
of doublons and holons and that of up and down electrons
are interchanged. The picture allows us to derive an effec-
tive free spinless fermion model that correctly captures the
presence of nonlocal order and its vanishing at the tran-
sition. The spinless model is exact in the limit of large U
values, thus complementing the standard strong-coupling
description with the t-J model.
The parity order is suitable for experimental detection

by high-resolution imaging [11] in ultracold Fermi gases.
Some of the features described here could possibly persist
in two dimensions, where the localization of bound pairs
could take place along one-dimensional stripes. The sce-
nario is quite suggestive also from the perspective of
high-Tc materials, where the presence of bound doublon-
hole pairs in the undoped insulator could play a role upon
doping in the onset of the superconducting phase. In fact,
the latter could be seen here as the LE phase in which
doublons freely move in a sea of correlated pairs of single
electrons with opposite spins.
The present analysis could be further exploited to

extended Hubbard models [3,19,20], to investigate the
presence of these types of topological order in other
gapped phases. For instance, the presence of both charge
and spin gaps in principle may give rise to four different
phases, depending on the vanishing or nonvanishing values

of the two Oð�Þ
P ’s. Work is in progress along these lines.

M. R. acknowledges support from the EU-ERC Project
No. 267915 (OPTINF).
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FIG. 3 (color online). Parity order OðcÞ
P calculated according to

Eq. (6) as a function of U (dashed line) in the MI phase of the
effective model (5) with � as in the inset figure, determined by
tuning the spinless fermion energy to the exact Hubbard value.
The results are compared with the numerical curve (continuous
line) obtained for the Hubbard model and shown in Fig. 2.
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