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Keeping the full quantum nature of the problem, we compute the relaxation time of the Holstein polaron

in one dimension after it was driven far from the equilibrium by a strong oscillatory pulse. Just after the

pulse, the polaron’s kinetic energy increases and subsequently exhibits a relaxation-type decrease with

simultaneous emission of phonons. In the weak coupling regime, partial tunneling of the electron from the

polaron self-potential is observed. The inverse relaxation time is for small values of electron-phonon

coupling � linear with �, while it deviates downwards from the linear regime at � * 0:1=!0. The

imaginary part of the equilibrium self-energy shows good agreement with the inverse relaxation time

obtained from nonequilibrium simulations.
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Photoexcitation is due to recent technological advances
in ultrafast spectroscopy, becoming one of the main ex-
perimental approaches to disentangle different elementary
excitations in a real-time domain on a femtosecond scale.
This rapidly developing field enables a novel insight into
quantum many-body systems; however, it also requires the
development of new theoretical concepts. In this context,
numerical simulations of nonequilibrium quantum me-
chanical systems may provide a key insight into processes
on a femtosecond time scale.

Several pump-probe experiments reported the observa-
tion of self-trapping of excitions emerging after the
pump pulse [1–3]. These experiments then triggered
theoretical studies of different scenarios of the polaron
formation, revealing a complex interplay between a single
electron and quantum phonons under nonequilibrium
conditions [4,5].

The role of electron-phonon (e-ph) interaction in several
different classes of strongly correlated materials is, despite
intensive research, still ambiguous since a subtle interplay
between electron-electron and electron-phonon interaction
may lead to various unconventional properties. Pump-
probe techniques have shown a potential to identify finger-
prints of these interactions during the relaxation process
[6–9]. Recently, the phenomenological two-temperature
model developed a long time ago [10,11] was extended
to more involved approaches like the three-temperature
model [12] and Boltzmann equation approaches [13–15].
Moreover, the assumption of fast relaxation within the
electron subsystem was recently challenged in the case of
strong electronic correlations [16]. In contrast to many
previous findings, it was shown that, in the 1D strongly
correlated system coupled to phonons, the relaxation on
short time scales is mostly due to e-ph interaction [17].

Theoretical studies of the polaron motion in strong but
constant electric field started with the seminal work by
Thornber and Feynman [18]. Later works mostly relied on
the rate or Boltzmann equations [19–21]. While quantum
coherent effects are absent in the Boltzmann description
[22], some recent approaches [23,24] show that taking
quantum effects fully into account is decisive to obtain
proper electric field dependence of the drift velocity at
large electric fields. Since most past works focused on
the influence of a constant electric field on the Holstein
polaron, the impact of a short oscillatory pulse on polaron
relaxation dynamics remains an open problem, despite
significant advances in ultrafast spectroscopy.
In this Letter, we present the results of a fully quantum

mechanical time evolution of the Holstein model in one
dimension driven far from the equilibrium by a laser pulse.
We determine characteristic relaxation times for the system
that is initially in equilibrium at zero temperature. The
investigated Holstein polaron is subjected to a spatially
homogeneous and time-dependent scalar potential that
mimics a short laser pulse,

�ðtÞ ¼ Ae�½ðt�tcÞ=td�2 sin½!pðt� tcÞ�; (1)

which is incorporated into the Hamiltonian via a Peierls
substitution in the hopping amplitude,

H ¼ �t0
X
l;�

½ei�ðtÞcyl;�clþ1;� þ H:c:� þ g
X
j

njðayj þ ajÞ

þ!0

X
j

ayj aj; (2)

where cyl;� and ayi represent electron and phonon creation

operators at site i and ni ¼ cyi ci is the electron density.
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!0 denotes the dispersionless phonon frequency, and t0 is
the nearest neighbor hopping amplitude.

The system is described by two dimensionless parame-
ters � and �, where � ¼ !0

t0
and � ¼ g2=ð2!0t0Þ that

determine the crossover from the adiabatic (� � 1) to
the nonadiabatic (� � 1) limits and the weakly dressed
electron (� � 1) to a heavy polaron (� � 1). We measure
the electric field F ¼ �@t�ðtÞ in units of t0=e0a, where e0
is the unit charge and a is the lattice distance. The unit of
energy is given by hopping amplitude t0, and the unit of
time is @=t0. From here on, we set a ¼ e0 ¼ @ ¼ t0 ¼ 1.
Unless explicitly stated, the phonon frequency is set to
!0 ¼ 1. The pulse in Eq. (1) is centered at tc ¼ 5, while
the width is given by td ¼ 2.

We solve the time-dependent Schrödinger equation for a
single Holstein polaron on an infinite one-dimensional
chain. We use the numerical method based on the exact
diagonalization of the variational Hilbert space that led to
numerically exact solutions of the polaron ground state
[25] and low-lying excited-state properties [26–29], as
well as for description of the time-dependent case [24].
The total energy gain from the external pulse is given by

�hHðtÞi ¼
Z
hjðtÞiFðtÞdt; (3)

where jðtÞ ¼ �@�H is the current operator.

Before examining the more physically relevant case, we
analyze the action of a pulse in the form of a delta function
FðtÞ ¼ ��0�ðtÞ that leads to a simple form of the scalar
potential �ðtÞ ¼ �0�ðtÞ, where �ðtÞ is the Heaviside func-
tion. Action with �ðtÞ on a free electron state (� ¼ 0) at
k ¼ 0 shifts its kinetic energy from Ekin ¼ �2 at t < 0 to
Ekin ¼ �2 cosð�0Þ when t > 0, leaving the electron in an
excited state, but an eigenstate at t > 0. In Fig. 1(a), we
show results for � ¼ 0:1 and �0 ¼ �. Just after the pulse,
the increase of the total �EðtÞ ¼ hHðtÞi � hHðt ¼ 0Þi, as
well as the kinetic energy �EkinðtÞ, reach the value �E�
�Ekin ��2 cosð�0Þ þ 2 ¼ 4, while the change of the
phonon energy �Eph remains close to its value in the

polaron ground state, i.e., �Eph � 0. After initial time t *

ti � 10, �EkinðtÞ exhibits a relaxation-type exponential
decay towards a constant value �Ekinðt ! 1Þ; meanwhile,
�EphðtÞ increases and the electron-phonon interaction term
�Ee-phðtÞ remains nearly a constant. This dynamics is

interpreted as a transfer of the excited electron kinetic
energy into phonon excitations. In Fig. 1(b), only
�EkinðtÞ is shown for different choices of pulse amplitude
�0. In all cases except for �0 ¼ �=4, �EkinðtÞ decrease
exponentially with roughly the same relaxation time. In the
case of �0 ¼ �=4, the increase of �EkinðtÞ is lower than
!0, indicating that the energy transfer from the pulse was
insufficient to allow electron relaxation via phonon emis-
sion; thus, no relaxation is observed.

We next consider a more realistic form of a pulse
described by the scalar potential of Eq. (1). At small

� ¼ 0:1, we observe a gain of the total energy �EðtÞ—
see Fig. 1(c)—signaling that, despite rather weak �, the
system has absorbed a substantial amount of energy. Note
that, after the pulse is switched off for t * 9 ¼ toff , the
total energy remains constant, while there is a clear redis-
tribution between expectation values of the parts of the
Hamiltonian. Redistribution between the kinetic �EkinðtÞ
and the phonon �EphðtÞ parts of the total energy clearly

indicates a relaxation of the system. After the pulse,
�EphðtÞ increases with time and �EkinðtÞ exponentially

decreases, while �Ee-phðtÞ oscillates roughly around

zero. This behavior is similar to the case when �ðtÞ ¼
�0�ðtÞ; see Fig. 1(a). For t � toff , most of the gained
energy is absorbed by the lattice. We should remark that
the relaxed expectation values of the kinetic energy are not
the same as before the pulse. As a general rule, we find in
all other cases �Ekinðt ! 1Þ & !0, which indicates that a
finite value of �Ekinðt ! 1Þ is a consequence of the gap
for optical phonons [22]. Nevertheless, we detect a clear
tendency of the exponential decay of the kinetic energy
towards only a slightly elevated value �Ekinðt ! 1Þ in
comparison to the initial energy Ekinðt ¼ 0Þ. We have
also computed the relaxation of the kinetic energy for

FIG. 1 (color online). (a) Expectation values of different parts
of the Hamiltonian vs time at � ¼ 0:1 and !0 ¼ 1:0 after the
action of �ðtÞ ¼ �0�ðtÞ for �0 ¼ �. (b) �EkinðtÞ vs t for
different �0 ¼ �, 3�=4, �=2, �=4, while other parameters
are the same as in (a). (c) Expectation values of different parts
of the Hamiltonian vs time at � ¼ 0:1 and !0 ¼ 1 after the
action of the pulse, as given in Eq. (1), with A ¼ 3, where
!p ¼ 1:5 is set close to the maximum of the optical conductiv-

ity, while parameters tc ¼ 5 and tp ¼ 2 remain unchanged

throughout this Letter. (d) �EkinðtÞ vs t for different values of
A ¼ 1, 3, 5; the rest is the same as in (c). The inset represents the
difference between kinetic energy and Ekinðt ! 1Þ for the same
pulse amplitudes as the main figure. (e) Energy of the different
parts of the Hamiltonian vs t for � ¼ 1:0 and !p ¼ 2:5.

(f) �EkinðtÞ vs t for different values of A ¼ 1, 3, 5, while the
rest is the same as in (e).
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different amplitudes of the pulse, presented in Fig. 1(d).
We found that the decay time is within our numerical
accuracy, independent of the amplitude of the pulse A, as
long as A exceeds a threshold value A * 1—see also the
inset of Fig. 1(d)—which is in agreement with the
Boltzmann theory.

In the intermediate coupling regime, namely, � ¼ 1:0, a
different response of the system is expected due to a bigger
gap between the polaron band and the continuum of ex-
cited states. After the pulse, almost the entire excess energy
is absorbed into the lattice vibrations, i.e., �Eðt > toffÞ �
�Ephðt > toffÞ; see Fig. 1(e). In addition to a large increase,
the latter displays oscillations with the period correspond-
ing roughly to the phonon frequency, as well. In Fig. 1(f),
we present results of �EkinðtÞ for different amplitudes of
the pulse. Apart from pronounced oscillations, we again
observe approximately exponential decay in the kinetic
energy, roughly independent of the strength of A when
A * 1. We also observe distinct long-time limits of kinetic
energies; however, in all cases, �Ekinðt � toffÞ<!0.

To get further insight into the relaxation dynamics, we
calculated the average number of phonon quanta located at
a given distance x from the electron

�ðxÞ ¼
�X

i

nia
y
iþxaiþx

�
; (4)

satisfying the sum rule hnphi ¼
P

x�ðxÞ. At time t ¼ 0,

�ðxÞ displays a pronounced peak at the position of the
electron (x ¼ 0), consistent with the shape of the polaron
in equilibrium. In the weak coupling regime, at � ¼ 0:1
and t > toff , �ðxÞ also shows, besides the original polaron
correlation peak, pronounced peaks separating from the
central peak in both directions as time increases; see
Fig. 2(a). This result is consistent with a hypothesis that
a strong pulse splits the polaron into an excited polaron and
a nearly free electron. The wave function is a superposition
of an excited polaron, responsible for the large value of

�ðxÞ at x ¼ 0 and a nearly free electron, traveling predomi-
nantly in the x > 0 direction. The more pronounced signal
for �ðx < 0Þ can be interpreted as a partial tunneling of the
electron part of the wave function from the polaron self-
potential that remains located at x ¼ 0. The asymmetry on
the parity transformation x ! �x is dynamically induced
and can be tuned by choosing a different shape of the
incoming pulse.
The peak at x < 0 starts to diminish with time because

(i) the escaped nearly free electron is gradually captured by
the lattice and (ii) the excited electron redistributes its excess
energy into a constantly spreading area of excited lattice
vibrations, giving rise to nearly uniform but elevated values
of �ðxÞ, clearly seen in Fig. 2(a). Here, we should stress that
redistribution in the correlation function must be due to the
electron’s motion since phonons are dispersionless. This
hypothesis is well supported by the estimation of the velocity
of the side peaks vp ¼ �x=�t� 2, representing the

maximal group velocity of the weakly coupled electron
[see the dashed line in Fig. 2(a)]. Similar partial tunneling
was noticed within the adiabatic limit of the driven
Su-Schrieffer-Heeger problem [30]. The above considera-
tions give complementary real space interpretation of related
experimental results, where excitations are identified in the
frequency domain [1,2]. In the strong coupling regime,
namely, � ¼ 1:0, as presented in Fig. 2(b), the polaron
peak at �ðx� 0Þ is preserved, but it broadens with time
and we observe no peak due to partial electron tunneling.
We computed the relaxation time by fitting the expecta-

tion value of the kinetic energy after the pulse with the

simple expression �EkinðtÞ ¼ �Ekinðt ! 1Þ þ Be�t=	,
where �Ekinðt ! 1Þ is the kinetic energy after relax-
ation and 	 is the relaxation time; see Fig. 3. The inverse

(a)

(b)

FIG. 2 (color online). Electron-phonon correlation function
�ðxÞ for pulse amplitude A ¼ 3: (a) � ¼ 0:1 and the pulse
frequency !p ¼ 1:5 and (b) � ¼ 1:0 and !p ¼ 2:5, at different

times. Note that there are different scales on both figures.

FIG. 3 (color online). Inverse relaxation time 1=	 (squares) vs
� for !0 ¼ 1:0 using a Gaussian pulse, Eq. (1). The dashed line
represents 1=	 ¼ 2!0�; see the discussion in the text. The
diamonds represent the imaginary part of the averaged equilib-

rium self-energy Im½~��. The circles represent 1=	 after the
instantaneous pulse �ðtÞ ¼ �0�ðtÞ, where pulse strength �0 ¼
� was used. The horizontal dotted line indicates the inverse
pulse width. The inset presents 1=	 vs �!0, using the Gaussian
pulse, Eq. (1), for !0 ¼ 1 (solid squares) and !0 ¼ 0:7 (open
squares).
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relaxation time 1=	 in the extreme weak coupling � � 0:1
regime shows a linear increase with electron-phonon cou-
pling, consistent with 1=	 � 2!0�. Considering an emis-
sion of a phonon by the excited electron with the kinetic
energy above the one-phonon threshold using Fermi’s
golden rule yields linear dependence on �, i.e., 1=	 ¼
2!0�=sinðkfÞ, where kf is the final electron’s momentum

and the inverse relaxation time is determined by the longest
decay time, namely, at kf ¼ �=2. With increasing �, the

inverse relaxation time 1=	 first deviates downwards from
the linear � dependence and then saturates as it becomes
comparable to the pulse width. The larger error bars are a
consequence of strong oscillations and a smaller spatial
extension of the variational phase space in the strong
coupling regime. Calculating 1=	 at smaller !0 ¼ 0:7
shows that the scaling of 1=	� fð�!0Þ, where fðxÞ is
some unknown function [note that, within Fermi’s golden
rule, fðxÞ ¼ 2x], persists beyond the linear in the � regime;
see the inset of Fig. 3. The saturation of 1=	 is absent in the
case when �ðtÞ ¼ �0�ðtÞ, also presented in Fig. 3. The
relaxation time after an instantaneous pulse corresponds to
the process averaged over all frequencies, and this explains
the deviation of the inverse relaxation time from a finite
width pulse.

An alternative method for the computation of 1=	 from
equilibrium properties is via the imaginary part of the self-
energy Im½�ð!Þ� [31] that represents the inverse of the

relaxation time of the quasiparticle excitation 1=	� ¼
Im½~�ð!pÞ�. Since Im½�ð!Þ� depends on the value of the

frequency of the pulse !p, we define 1=	� via the average

value ~�ð!pÞ¼ð1= ffiffiffiffiffiffiffiffiffiffi
2��

p ÞRe�ð!�!pÞ2=ð2�Þ2�ð!Þd!, where

� ¼ 1=td, and integrate over a distribution of frequencies
corresponding to the Fourier transform of the pulse.

To conclude, in this Letter, we studied the relaxation
dynamics of the Holstein polaron after the strong photo-
excitation. In all cases, a threshold value of the absorbed
energy �E�!0 exists, above which the relaxation dy-
namics via phonon emission is observed. We computed the
relaxation time that is mostly independent of the shape of
the pulse. We focused on the values of the e-ph coupling �
below the crossover to the strong-coupling regime, i.e.,
�c � 1. In this range of �, relaxation dynamics exhibits
two distinct regimes with qualitatively different behavior:
the regime of very weak e-ph coupling, � < 0:1=!0, and
the regime when � * 0:1=!0.

In the weak-coupling regime � < 0:1=!0, 1=	 roughly
follows the linear scaling 1=	� 2!0� obtained from the
Fermi golden rule. In the regime of � * 0:1=!0, 1=	
deviates from the linear in � dependence well below the
crossover to the small polaron regime and is reproduced by
the imaginary part of the averaged electron self-energy.
The real-time calculation reveals oscillations in �EkinðtÞ
and other expectation values, with the period of the phonon
frequency, T � 2�=!0. This result is in agreement with a

recent study of a half-filled 2D Hubbard-Holstein model
[32], where oscillations with the period T were observed
for � < �c.
In comparison with the experiments, our relaxation

times are short, which is a consequence of the rather high
adiabatic coefficient � ¼ 1. While, in the regime � &
0:1=!0, the effect on 	 by lowering � can be obtained
from the Fermi golden rule 	 / 1=�!0 ¼ 1=��t0, our
numerical results show that, even in the regime when � *
0:1=!0, there exists approximate scaling 	� 1=fð�!0Þ
that can be used to extend our results towards potentially
more physically relevant values of � and consequently
longer relaxation times 	. Another interesting topic for
further research is the effect of the dimensionality. In the
equilibrium, the crossover to the large effective mass
regime of the higher-dimensional polaron is much sharper
than in the 1D systems [33]. Our nonequilibrium simula-
tions are qualitatively consistent with experiments on
quasi-one-dimensional systems [34], where exponential
relaxation takes place [1,2], while slower relaxation de-
pendence was observed in 2D systems [35–38].
Let us briefly discuss the possible relevance of our

results to correlated electron systems with a finite electron
density, such as, e.g., the Hubbard model. A recent non-
equilibrium DMFT study showed that the relaxation time
of the pump–excited Hubbard model in the case of large
Coulomb repulsion is unexpectedly long [16] due to the
exponentially slow decay rate of pump-generated dou-
blons, in agreement with experiments on optical lattices
[39]. These results open a relevant question about the
dominant mechanism of fast relaxation observed in photo-
excited strongly correlated materials. Lately, the emission
of phonons in the 1D Hubbard-Holstein model was indeed
shown to be a very efficient relaxation mechanism [17],
where a non-negligible amount of phonons is already
emitted during the application of the pulse. This observa-
tion is in agreement with our results, presented in Fig. 1,
and suggests that the time evolution far from the equilib-
rium may provide a comprehensive understanding of the
photoexcited polaronic systems.
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