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The wetting properties of solid substrates with mesoscale (between van der Waals tails and the capillary

length) random roughness are considered as a function of the microscopic contact angle of the wetting

liquid and its partial pressure in the surrounding gas phase. It is shown that the well-known transition

occurring at Wenzel’s angle is accompanied by a transition line at which a jump in the adsorbed liquid

volume occurs. This should be present generally on surfaces bearing homogeneous, isotropic random

roughness. While a similar abrupt filling transition has been reported before for certain idealized groove or

trough geometries, it is identified here as a universal phenomenon. Its location can be analytically

calculated under certain mild conditions.
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The physics of wetting and spreading on ideally smooth
surfaces has meanwhile reached the status of mature text-
book knowledge [1–4]. In contrast, the wetting properties
of randomly rough solid substrates, which are by far more
relevant, are still poorly understood. This is in part due to
the wide range of scales to be covered, which extends from
the submicron scale to the scale of millimeters, just before
gravity comes into play. Aside from treatments on the
nanometer scale [5–9], which is not dominant for most
roughnesses encountered on real surfaces, most authors
have tried to model rough surfaces as Gaussian random
processes [10–17], or to capture single aspects of wetting
using simplified model geometries [18–26]. For the latter
approach, it has been shown that for variable contact
angle and vapor pressure, some of the idealized geometries
exhibit a filling transition, and some do not [20,21]. In this
Letter, it is shown that the filling transition is indeed the
generic case for a wide range of roughnesses occurring
naturally. A method for analytically calculating the corre-
sponding phase diagram is given.

Wenzel was the first to provide a systematic study of
wetting on mesoscopically rough surfaces [27]. By meso-
scopic we mean, on the one hand, larger than the typical
ranges of wetting forces (such as van der Waals, of order
several nanometers), such that a microscopic contact angle
is well defined (furthermore, line tension effects can be
safely neglected on that scale [28–30]). On the other hand,
we consider only roughness that is small as compared to
the capillary length of the liquid, such that gravity effects
can as well be neglected. Note that most roughness encoun-
tered customarily falls in that ‘‘mesoscopic’’ range.Wenzel
characterized the roughness by a single parameter, r,
which he defined as the ratio of the total substrate area
divided by its projected area. Obviously, r � 1, and r ¼ 1
corresponds to a perfectly smooth surface. The free energy
which is gained when the rough substrate is covered with
a liquid is then given by rð�sg � �slÞ, where �sl and �sg

are the solid-liquid and solid-gas interfacial tension,

respectively. If this gain is larger than the surface tension
of the liquid, �, we expect a vanishingmacroscopic contact
angle, because covering the substrate with the liquid
releases more energy than is required for the formation
of a free liquid surface of the same (projected) area.
More specifically, force balance at the three-phase contact
line yields

cos�macro ¼
rð�sg � �slÞ

�
¼ r cos� (1)

where � ¼ arccos½ð�sg � �slÞ=�� is the microscopic con-

tact angle [31]. When � is reduced to �W ¼ arccosð1=rÞ,
�macro vanishes, and the substrate is covered with an
‘‘infinitely’’ thick liquid film. In the present Letter, we
explore the vicinity of this transition in some detail, both
at liquid-vapor coexistence and below the saturated vapor
pressure.
We describe the rough solid substrate by a function

fðx; yÞ, which shall approximate the actual physical sur-
face at any required precision, but be mathematically
smooth, such thatrf and�f exist everywhere. The rough-
ness is assumed to be homogeneous and isotropic; i.e., its
statistical parameters shall be the same everywhere on the
sample, and independent of rotation of the sample about
its normal axis. A small amount of liquid deposited on
this substrate will make an interface with the surrounding
gas, which is described by a second function, gðx; yÞ. The
support of g is the wetted area, which we call W .
Continuity of the liquid surface assures g ¼ f on the
boundary of W , i.e., the projection of the three-phase
contact line, henceforth denoted by @W [cf. Fig. 1(a)].
As the amplitude of most natural roughness is much

smaller than its dominant lateral length scale, we assume
that

jrfj � 1 (2)
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which allows for substantial simplifications. The same
shall hold for g. The contact angle with the substrate, �,
yields the boundary condition

jrðg� fÞj � tan� � � (3)

which is to be fulfilled everywhere on@W , to first order in�,
rf, and rg. This determines the morphology of the liquid-
vapor interface, and thereby@W and the amount of adsorbed
liquid. Applying Green’s theorem to (g-f), we obtain

Z
@W

n � rðg� fÞds ¼
Z
W

�ðg� fÞd2x (4)

where s is the distance along @W , n its unit normal vector,
and x ¼ ðx; yÞ. Since g ¼ f on @W , rðg� fÞ is perpen-
dicular to @W everywhere. Hence Eq. (3) may be written as
n � rðg� fÞ � �, and Eq. (4) can be recast into

l�þ
Z
W
½2H ��f�d2x ¼ 0 (5)

in which l denotes the length of @W , and H � 1
2 �g is the

mean curvature of the liquid-vapor interface. The latter is
given by the Kelvin equation,

H ¼ kBT

2�vm

ln
ps
p

(6)

where p is the partial pressure of the adsorbed liquid in the
surrounding gas phase, ps is its saturated vapor pressure, vm

its molecular volume, and kB is Boltzmann’s constant. It is a
convenient measure for the deviation from liquid-vapor
coexistence.

Before we can exploit Eq. (5), we derive a few useful
relations. If pðfÞ is the height distribution of fðxÞ, the total
area between the contour lines at f ¼ z and at f ¼ zþ dz
is given by pðzÞdz, which corresponds to the hatched area

in Fig. 1(b). The average slope on that set,�1ðzÞ ¼ hjrfjiz,
is given by

�1ðzÞ ¼
R jrfðzÞjd�

pðzÞdz (7)

where d� ¼ dsdz=jrfðzÞj is the differential of the hatched
area. Hence for the total length of the contour line at height
z we obtain

LðzÞ ¼
Z

ds ¼ �1ðzÞpðzÞ: (8)

Next we apply Green’s theorem to �f, this time to the area
enclosed by the contour line at f ¼ z. This yields

Z
CðzÞ

�fd2x ¼
Z
@C
n � rfds (9)

where CðzÞ is the set fx j fðxÞ � zg, and @C its boundary,
i.e., the contour line itself. Introducing �2ðzÞ ¼ hjrfj2iz,
we readily see that Eq. (9) can be rewritten as

Z
CðzÞ

�fd2x ¼ �2ðzÞpðzÞ: (10)

The vertical position of the three-phase contact line,
which may be symbolically written as fð@W Þ, will vary
along @W about an average value, h ¼ hfð@W Þi. The
projection of the contact line onto the plane will thus
approximately follow the contour line at fðxÞ ¼ h, with
excursions towards both the outside and the inside of W .
These will in cases represent detours, sometimes shortcuts
with respect to @W . As a reasonable approximation, we
may thus use l � LðhÞ for the length of the three-phase
contact line. Similarly, we set

Z
W

d2x �
Z h

�1
pðzÞdz ¼ WðhÞ (11)

for the wetted sample area. Inserting these expressions in
Eq. (5), we obtain

2HWðhÞ �
�
�2ðhÞ
�1ðhÞ � �

�
LðhÞ: (12)

This allows, if pðhÞ, �1ðhÞ, and �2ðhÞ are known from
experimental characterization of the sample, to determine
the adsorbed amount of liquid, V, as a function of � andH.
V is related to h via

V ¼
Z h

h�
ðh� fÞpðfÞdf; (13)

and can be evaluated if h and pðfÞ are known. However, we
continue here to discuss h instead, since it is more acces-
sible through the formalism developed above.
Up to this point, we have not made any specific assump-

tion about the roughness profile, except it being sufficiently
shallow for the approximations made above to hold. Now
we shall go one step further, observing that roughness
profiles generated by wear, weathering, erosion, etching,

FIG. 1. (a) Top view of the sample, showing the wetted areas
in grey, the bare substrate in white. The normal vector to @W , n,
lies in the (x, y) plane. (b) Two sets of contour lines of f at
heights z and zþ dz. The hatched area between the lines is equal
to pðzÞdz.
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sand blasting, or similar processes will invariably have a
finite codomain (we disregard fissures and cracks here). In
other words, the support of pðzÞ is the interval ½z�; zþ�8x,
where z� represents the depth of the deepest trough, and zþ
the height of the highest elevation on the sample. This has
severe consequences for�1 and�2, as both must go to zero
as z ! z�. To see that, consider the distribution of minima,
��ðzÞ. Clearly,�� ! 0 for z ! z�, and we may choose to
write ��ðzÞ ’ �0ðz� z�Þ�, with some � > 0. Since each
minimum is parabolic to first order, one can readily verify
that it contributes 4�ðz� z0Þ to �1, if z0 is the depth of the
minimum. We thus have

�1ðhÞ � 4�
Z h

z�
��ðzÞðh� zÞdz ’ �0ðh� z�Þ�þ2

ð�þ 1Þð�þ 2Þ :
(14)

The ‘‘�’’ sign has been used because there may be saddle
points (or even maxima) occurring at elevations between
h� and h, which can only reduce �1. As Eq. (14) shows,
�1ðhÞ is bounded from above by a function which vanishes
at least quadratically as h ! z�. An analogous result is
obtained for h ! zþ.

Next we consider the ratio�1=�2. With the abbreviation
� ¼ jrfj, we have

�1ðhÞ ¼ 2�
Z

�2qðh; �Þd� (15)

where qðh; �Þ is the distribution of slopes, sampled at
height h. Similarly, we have

�2ðhÞ ¼ 2�
Z

�3qðh; �Þd�: (16)

As a consequence,

�2ðhÞ
�1ðhÞ

¼
R
�3qðh; �Þd�R
�2qðh; �Þd� < �maxðhÞ (17)

where �max is the maximum slope encountered at elevation
h. Since this vanishes as h ! z� as �1 does, so will the
ratio �2=�1, as Eq. (17) shows.

Aside from these global properties, both �1 and �2 are
expected to be largely featureless, due to the general fact
that the processes leading to roughness exhibit only very
limited lateral correlation. For any pronounced feature to
develop in �i, distant places on the sample would have to
‘‘conspire’’ to contribute to that feature at the same depth.
This can happen only for composite surfaces, where the
roughness topography may penetrate through a coating or
other stratigraphic variation of material properties. Such
ramifications are interesting to consider for practical pur-
poses, but well beyond the scope of the present article.

The generic shape of the function

�ðhÞ ¼
�
�2ðhÞ
�1ðhÞ � �

�
(18)

which appears in Eq. (12) is sketched in Fig. 2, according
to the discussion above. Following Eq. (12), the film
thickness at coexistence (H ¼ 0) can be derived from the
zeros of �, of which there are either two or none, depend-
ing on �. In the latter case, the contact angle is too large for
forming a liquid surface between the spikes and troughs
which complies with the boundary condition, Eq. (3). If,
however, �ðhÞ intersects the h axis, the slopes of the zeros
decide upon the stability of the corresponding solutions.
This can be seen by appreciating that�may be interpreted
as a deviation from the force balance expressed by Eq. (3).
For the left zero, which is marked by an open circle in
the figure, a displacement of the three-phase contact line
would give rise to an imbalance of wetting forces which
drives it further away from the zero. The opposite is true
for the right zero, marked by the closed circle. The latter
therefore corresponds to the stable solution, and thus to the
adsorbed film thickness which will develop. All this is in
marked contrast to Gaussian roughness, which has been
frequently invoked for reasons of mathematical tractabil-
ity, but strictly speaking does not occur in nature. For
Gaussian roughness, �1 and �2 are independent of h,
with �2=�1 ¼ 4=�8h [32]. This is in fact a dramatic
difference, as � would then just be a horizontal straight
line which lies either above or below the h axis depending
on �. As a consequence, the whole structure we are devel-
oping here would be absent.
The graph of �ðhÞ makes contact with the horizontal

axis when � reaches

FIG. 2. Graphic construction for solving Eq. (12). The dashed
line represents the left-hand side of Eq. (12).
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�f ¼ max

�
�2

�1

�
: (19)

At this point, the formerly dry substrate is covered with a
liquid film of ‘‘thickness’’ hf ¼ argmaxð�2=�1Þ. It is

important to note that �f always lies above �W . To see

this, we note that r ¼ 1= cos�W � 1þ 1
2�

2
W . Furthermore,

r ¼ h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jrfj2p i. Thus we have

�2W � 1

jSj
Z hþ

h�
�2ðhÞpðhÞdh <maxð�2Þ: (20)

On the other hand, �2 >�2
1, such that

�2f ¼ max

�
�2

�1

�
2
>maxð�2Þ: (21)

From Eqs. (20) and (21), it follows directly that �f > �W .

Let us now consider the system off coexistence, again
invoking Eq. (12) as the condition determining h. A graph-
ical solution of Eq. (12) is sketched in Fig. 2(b). As long as
� > 0, both relevant zeros of �LðhÞ [representing the
solutions of Eq. (12) forH ¼ 0] lie well within the interval
[z�, zþ]. For H > 0 (dashed curve), the closed circle
indicates again the stable solution. Obviously, the two
points of intersection will merge when the dashed and solid
curves touch each other only at a single point. This occurs
at a certain curvature Hfð�Þ of the liquid surface. For

H >Hf, solid and dashed curve meet only for h ! z�:
there is no liquid adsorbed, and the substrate is dry. Hence
the average position of the liquid surface, h, and thus the
surface coverage, jumps discontinuously at H ¼ Hf. It is

clear from the construction that Hf decreases monotoni-

cally with �. As H is reduced below Hf, h increases

continuously until at coexistence it reaches a value corre-
sponding to the right zero of �L. When the microscopic
contact angle is varied, a line of transitions results, which is
shown in Fig. 3 as the solid curve.
We should not close without mentioning that the pres-

ence of roughness gives rise to substantial equilibration
times, as saddle points and extrema occurring at elevations
h0 2 ½z�; zþ� provide effective pinning centers [1,33,34].
However, transport through either the gas phase or through
the molecular adsorbed film [35,36] will always allow
equilibration over manageable times, since the lateral dis-
tances involved are never larger than the lateral length
scale of the roughness.
In conclusion, it turns out that on customary rough

surfaces, with homogeneous and isotropic random rough-
ness on length scales large as compared to molecular scales
(but smaller than the capillary length) should quite gener-
ally exhibit a filling transition at contact angles larger than
those where the Wenzel transition occurs. This filling
transition is accompanied by a line of transitions reaching
away from liquid vapor coexistence.
This finding may be of importance, e.g., for transport

processes in soils, since typical roughness length scales
encountered on many hard solid surfaces, like on grains of
minerals, entail a filling transition at liquid surface curva-
tures encountered a few centimeters up to few meters
above the water table. It is therefore conceivable that the
liquid transport processes in the vadose zone are strongly
influenced by the wetting phase diagram proposed above.
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