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We consider fermions on a 2D square lattice with a finite-range pairing interaction, and obtain signatures

for unconventional pair-symmetry states, dx2-y2 and extended-s (s�), in the Bardeen-Cooper-

Schrieffer–Bose-Einstein Condensation crossover region. We find that the fermion momentum distribution

function, v2
k, the ratio of the Bogoliubov coefficients, vk=uk, and the Fourier transform of v2

k are strikingly

different for d and s� symmetries in the crossover region. The chemical potential and the gap functions for

both pairing symmetries show several interesting features as a function of interaction. Fermionic atoms in 2D

optical lattices may provide a way to test these signatures. We discuss current generation cold atom

experiments that may be utilized.
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In recent years, there have been fascinating discoveries
of several classes of systems exhibiting many-body states
with paired fermions, that may have unconventional pair-
ing symmetry, different from that in the s-wave Bardeen-
Cooper-Schrieffer (BCS) case. These range from heavy
fermions, high-Tc cuprates, iron-pnictides, to ultracold
fermions. There are intense theoretical and experimental
efforts aimed at deciphering pairing symmetries or mecha-
nisms in these systems.

Ultracold neutral atoms [1] present an unprecedented
opportunity to study the physics of quantum many-particle
systems. Subjected to positive and negative detuning using
the Feshbach resonance technique, these provide realiza-
tions of weak-coupling BCS to strong coupling Bose-
Einstein Condensation (BEC) crossover behavior, and the
unitarity limit, where the scattering length is infinite.

Cold fermionic atoms in optical lattices [2,3] constitute
an intriguing set of systems. Tunability of filling (particles
per site), hopping kinetic energy or interparticle interaction
render optical lattices unprecedented testing grounds for
models of correlated electron systems. It has been suggested
[4] that atoms in optical lattices, confined to the lowest
Bloch band, can be represented by the archetypal condensed
matter Hamiltonian, the Hubbard model with hopping t
between neighboring sites, and on-site interaction U.
Interatomic magnetic or electric dipole interactions, and
possibly multiband couplings, can result in finite-range
interactions, that could simulate the extended Hubbard
model [5]. Duan [6] has shown that on different sides of a
broad Feshbach resonance, the effective Hamiltonian can
be reduced to a t-J model, familiar in studies of correlated
electron systems, J being related to spin or magnetic cou-
pling. Calculations [7–9] predict that attractive-U Hubbard
model gives rise to s-wave superconductivity, while the
repulsive-U model results in an antiferromagnetic or a
d-wave superconducting phase depending on filling. It has
been suggested [10] that the underlying physics of the high

Tc superconductors may be understood by studying optical
lattice systems.Also, due to the possibility that the cuprates,
possessing short coherence lengths, could fall in the BEC-
BCS crossover region, the crossover problem [11,12] has
received considerable theoretical attention. Several authors
employed continuummodels [7,13–16], focusingmostly on
conventional s-wave pair symmetry. Lattice models with
on-site or nearest-neighbor attractions have also been con-
sidered [7,13,16–18]. There is also a large body of theoreti-
cal work [19,20] specific to cold fermions.
Observation of Mott-insulator behavior [21] and s-wave

superfluidity (for attractive interactions) [22] in 3D optical
lattices represent remarkable feats. Current searches for
new phases, such as antiferromagnetism or unconventional
pairing, are greatly facilitated by recent development of
analogs to existent powerful experimental tools in con-
densed matter physics. Examples of these new tools are
momentum resolved radio frequency (rf) and rf pairing gap
spectroscopies [23,24], tomographic rf spectroscopy [25],
out of lattice time-of-flight measurements [26], fluorescence
imaging [27], and momentum-resolved photoemission spec-
troscopy [28], analogous to angle-resolved photoemission
spectroscopy (ARPES) in condensed matter [29].
In this Letter, we study zero temperature fermion pairing

in a 2D square lattice in the BEC-BCS crossover regime
using a finite-range pairing interaction. As representative
cases of unconventional pair symmetry, we consider two
even-parity representations of the cubic group, namely, the
‘ ¼ 2 dx2-y2-wave, and the ‘ ¼ 0 extended s-wave (s�).
We present several new results, in particular, specific sig-
natures of states with unconventional pairing gap symme-
tries as one goes between weak and strong coupling
regimes. We expect our results to be of relevance to fer-
mionic atoms in 2D optical lattices, and to correlated
fermion model systems these would simulate. A key result
is the remarkable behavior of the fermion distribution
function, v2

k, (related to momentum distribution, nk).
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For a d-wave pairing gap function, v2
k changes abruptly

from exhibiting a peak at the Brillouin zone (BZ) center
(0,0) to a vanishing central peak accompanied by a
redistribution of the weight around other parts of the
BZ ((0, ��), (� �, 0)) as the system crosses from the
weak-coupling BCS to the strong-coupling BEC regime.
Its Fourier transform exhibits a ‘‘checkerboard’’ pattern
in real space. By contrast, v2

k changes smoothly in the

s�-wave case. We find similar signatures in the ratio of
Bogoliubov coefficients vk=uk, related to the phase of the
superfluid wave function.

Our finite-range pairing interaction is obtained from the
extended Hubbard model for two equal species population
system on a 2D square lattice:

H ¼ X

hiji�
ð�tcyi� þ cj� þ H:c:Þ þU

X

i

ni�ni��

� V
X

hiji��0
ni�nj�0 ��o

X

i

ni; (1)

where t is the hopping, �o the unrenormalized chemical
potential, U the on-site repulsion and V the nearest-
neighbor attraction. � is the ‘‘spin’’ index, which could
refer to hyperfine states in optical lattices. In mean-field
theory, the Hartree self-energy terms renormalize �o such
that � ¼ �o þ�UðfÞ þ�VðfÞ, where �UðfÞ and �VðfÞ
are filling-dependent corrections to �. We work with the
renormalized� so as to properly deal with weak and strong
couplings, and take �JiðfÞ ¼ Jif, where Ji ¼ U,�V. The

filling f ¼ N=2M, with N the number of particles, M the
number of lattice sites, and the spin degeneracy factor of 2.
In correlated electron systems, interactions are mainly
Coulombic in origin, and V is typically an order of magni-
tude down from U. These are scaled by t for a convenient
characterization of weak and strong coupling, and to
be broadly applicable. In optical lattices, an effective
Hamiltonian, similar to Eq. (1), could be deduced with V
arising from dipolar, or multiband couplings.

On Fourier transforming and retaining interactions
between particles with equal and opposite momentum,
the reduced pairing Hamiltonian assumes the form

Hpair ¼
X

k

ð�k ��Þcyk ck þ
X

kk0
Vkk0c

y
k0c

y
�k0c�kck; (2)

where in the tight-binding approximation, �k¼
�2tðcoskxþcoskyÞ; Vkk0 ¼V0ðcosðkx�k0xÞþcosðky�k0yÞÞ,
which is nonseparable. Using the standard BCS varia-

tional ansatz, j�BCS> ¼ Q
kðuk þ vkc

y
kc

y
�kÞj0> , we

obtain the T ¼ 0 gap equations for the gap functions

�d;s
k ¼ �oðfÞðcoskx � coskyÞ with dx2-y2 ð�Þ and s� ðþÞ

symmetries,

1

Vo

¼ 1

2M

XBZ

k

coskxðcoskx � coskyÞ
Ed;s�
k

; (3)

where Ed;s�
k ¼ ½ð�k ��Þ2 þ�2

oðcoskx � coskyÞ2�1=2. The
Bogoliubov coefficients are given by

jukj2; jvkj2 ¼ 1

2

�
1� �k ��

Ed;s�
k

�
: (4)

The ratio vk=uk ¼ �½Ed;s�
k � ð�k ��Þ�=�d;s�

k . We read-

just � for strong attractions by supplementing the T ¼ 0
gap equation with the number equation [12]

N ¼ XBZ

k

�
1� �k ��

Ed;s�
k

�
: (5)

This determines the self-consistently readjusted �,
which is no longer fixed at the Fermi level, and makes
the gap equation applicable over the entire range of fill-
ing, thereby the BCS and BEC regimes. To allow for
strong scattering, sums are performed over the entire
BZ. The natural momentum cutoff afforded by the lattice
avoids any possible ultraviolet divergences.
Remarkable differences stem in an essential way from

differences in gap symmetry. The dx2-y2 gap �d
k vanishes

along the lines�kx ¼ �ky in the 2D BZ, i.e., at four points

on the Fermi surface, the location of which depends upon

filling. The s� gap �s�
k coincides with the tight-binding

Fermi surface at exact 1=2 filling, and is nodeless other-
wise. Here, � � 0, with � ¼ �4t at the bottom of the
band. Owing to particle-hole symmetry, it is sufficient to
consider 0 � f � 1=2. The following distinctions are evi-
dent from Eqs. (3)–(5):
(a) For low fillings (f ! 0, � ! �4t), a threshold

coupling is required for d-wave pairing, while in the s�

case, �s� ! 0 as V ! 0 due to a weak singularity at � ¼
�4t. At 1=2 filling, however, due to a weak singularity at
� ¼ 0 in the d-wave case, �d ! 0 as V ! 0. For s�, this
singularity is not present, so, as �s� ! 0, V=4t ! �2=8,
i.e., a minimum coupling is needed for pairing. In contrast

with �s�
0 ðVÞ, �d

0ðVÞ changes slope at � ¼ �4t, and hence

not smooth everywhere (though continuous).
(b) For small momenta k, the system exhibits the follow-

ing limiting behavior: (i) �k < �ð¼ �4tÞ; jukj ! 1,
jvkj ! 0; this is the strong-coupling BEC limit. Here the
ratio vk=uk ��k=2j�j ! ðk2x � k2yÞ=2j�j, i.e., analytic.

(ii) �k > �ð¼ �4tÞ; jukj ! 0, jvkj ! 1; this is the weak-
coupling BCS limit. Here, vk=uk ! 1=ðkx � kyÞ, i.e., non-
analytic. (iii) �k ¼ �ð¼ �4tÞ; jukj � 0, jvkj � 0, when
Ek ! 0. Then vk=uk � ðkx � kyÞ=ðkx þ kyÞ, i.e., inter-

mediate between (i) and (ii). For d waves, the quasiparticle
excitations in the BCS limit (ii) are ‘‘gapless’’ for some
values of k, while in the BEC limit (i), Ek � 0, even for
gaps with nodes [30].
Self-consistent numerical solutions of Eqs. (3)–(5) bear

out the above features in detail, and reveal additional
features. We scale �, V, and � by hopping parameter t.

At a given filling f, both �d
k and �

s�
k increase with increas-

ing V. While for d waves it is easier to pair electrons
at higher fillings, this is not necessarily the case for s�
waves for the weaker couplings V=4t � 1:5 and small gaps

�s�=2t � 0:5.
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In Fig. 1 we show�ðVÞ for different fillings f. At a fixed
f, in both the d- and s�-wave cases, � decreases with
increasing coupling V, changing less rapidly for progres-
sively larger f. However, as shown in the inset, for
s�-waves, �ðVÞ exhibits a small ‘‘bump’’ for weaker cou-
plings V=4t � 1:5; for the uniform s-wave, the drop in �
with V is significantly more rapid. Crossover to the BEC
regime is signaled by�ðVÞ going below the� ¼ �4t line.
As Fig. 1 shows, for dwaves, this develops at all fillings for
some minimum coupling Vb=4t. We note that as f ! 0,
Vb=4t ! 1:8; at 1=2 filling, this coupling tends to infinitely
large values. For V > Vb, the system is conducive to BEC
pairing, and for V < Vb, the system exhibits BCS-like
features.

Figure 2 shows the behavior of d-wave gaps as a function
of coupling V for different values of the chemical potential
�. The � ¼ �4t curve represents the locus of Vb=4t for
different fillings (see Fig. 1), and demarcates BEC and BCS-
pair regimes. To the left is the�>�4t regionwherein finite
gaps of the BCS or intermediate BCS-BEC types exist. On a
given constant-� curve it may not be possible to have
solutions for any arbitrary filling, but only those that satisfy
Eqs. (3) and (4) self-consistently. The inset in Fig. 2 shows

the corresponding �s� ðVÞ curves for the s� case. There are
interesting differences with the d-wave results in that the
boundary (� ¼ �4t) separating the BEC-BCS regimes is
not as clear cut forweaker couplingsV=4t � 1:5 and smaller
gaps �=2t � 0:5; however, the �<�4t region lies to the
right of the � ¼ �4t curve, as in the d-wave case.

Differences in the gap symmetry manifest in a striking
manner in the momentum distribution function, v2

k, and the

ratio vk=uk. For d waves, for a given filling, in the weak-
coupling BCS regime [V < VbðfÞ,�>�4t], v2

k exhibits a

peak centered around the zone center (0, 0), that becomes
progressively narrow with decreasing filling. Then at the
crossover point at VbðfÞ (� ¼ �4t), v2

k abruptly goes to

zero around (0, 0), and shows a drastic redistribution along
(0,��), and (� �, 0) of BZ. The abruptness is manifested

in a ‘‘jump’’ in v2
k as the chemical potential goes from just

above the bottom of the band (�>�4t) to just below
(�<�4t), i.e., from BCS to BEC regime. A representa-
tive case is shown in Figs. 3(a) and 3(b). In marked con-
trast, for s�waves, [Figs. 3(e) and 3(f)], the zone center peak
in v2

k decreases smoothly as one goes from the BCS

to the BEC regime; only a slight redistribution occurs at
(� �, ��). This behavior is replicated at all fillings f <
1=2. As noted above, in the small-k limiting cases, our
numerical calculations show [Figs. 3(c) and 3(d)] that for
d waves, in the weak-coupling BCS regime, vk=uk is non-
analytic at�kx ¼ �ky; in the strong-couplingBEC regime,

vk=uk is analytic, vanishing along the zone diagonals and
peaking about (� �, 0) (0��). In the s� case (not shown),
vk=uk is analytic in both regimes. Thus we expect states
with d- or s�-pairing gap symmetry to exhibit contrasting
behavior at the BCS-BEC crossover, i.e., the unitarity limit.
The Fourier transform of v2

kðkx; kyÞ, namely, �vðx; yÞ
reflects these differences. In the d-wave case, in marked
contrast with its behavior in the BCS regime, �vðx; yÞ is
oscillatory in the BEC regime, and exhibits an inhomoge-
nous ‘‘checkerboard-type’’ pattern; see Figs. 4(a) and 4(b).
For the parameters of Fig. 3, the contrast ratio of the lowest
density to the peak is roughly 50%, being most sensitive to
the location of �ðVÞ. The length scale is of the order of
fractions of lattice spacing. �vðx; yÞ is fairly uniform in the
s� case in both regimes.
For correlated electrons, existent experimental tech-

niques can reveal the proposed signatures to distinguish
between states with d or extended-s (s�) symmetry; e.g.,
v2
k, its Fourier transform, and quasiparticle energy could be

deduced from ARPES [29], pair symmetries from quasi-
particle tunneling or scanning tunneling microscopy [31].
In cold fermion systems, v2

k, and its Fourier transform,

could be determined from time-of-flight [26] measure-
ments, in which atoms are released from the lattice, and
imaged at a later time. Combined with rf pairing gap

FIG. 1. Chemical potential � versus coupling V at different
fillings f for d-wave pairing. BEC pairs appear where �ðVÞ
crosses the �=2t ¼ �2 line. The inset shows �ðVÞ for
s- (dashed-short dashed line), s�- (dashed line), and d-wave
(solid line) pairing at f ¼ 0:2.

FIG. 2. d-wave gap functions �=2t vs nearest-neighbor cou-
pling V=4t for different chemical potential �. Inset: Results for
the s� case. � ¼ �4t demarcates BEC and BCS regimes.
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spectroscopy [24,32] (analog of tunneling), this could
decipher the pairing symmetry. Momentum-resolved rf
spectroscopy [23,28], could provide information on the

quasiparticle energy Ek ¼ ð�2
k þ �2kÞ1=2, thereby shedding

light on (uk, vk) and density of states.
Here we have considered a homogeneous Fermi system,

so as to appeal broadly to both condensed matter and cold
atom physics. While we expect key aspects of our results to
hold for cold fermion systems in the presence of atomic
traps, we comment on possible effects of the trap. But, first,
we note that we consider a pairing Hamiltonian based on

the extended Hubbard model, and not the simple Hubbard
model, on which most discussions in cold atom literature
are based. We are also away from 1=2 filling, and at
relatively strong coupling, so that possible effects of spin
density wave and charge density wave instabilities are
expected to be suppressed. We have checked [13] that the
addition of next-near-neighbor hopping tends to stabilize
the paired state, as well as lower the minimum near-
neighbor interaction necessary for a bound state.
Away from 1=2 filling (lower fillings) for a 2D lattice in

the presence of a trap [within local density approximation],
the multitude of quantum phases obtained [33–35] near 1=2
filling may not exist [33,34], leaving a metallic state from
the trap center to the edge. Thus, for this range of fillings,
our results are not expected to be subject to competing
signatures from other possible phases in rf spectra. Closer
to 1=2filling,within local density approximation, theremay
be other phases, e.g., pairing in different shells behaving as
infinite system in each shell [35]. Then, tomographic (spa-
tially resolved) rf spectroscopy [25], using in situ phase
contrast imaging technique, would be able to probe each
shell region, within each of which our results should hold.
Recent work [36] have pointed out possible effects of

trap inhomogeneity on the Hartree term, and consequently
on rf spectra. In this work, Hartree effect on self-energy is
obtained at first-order, so the role of higher-order terms
towards a convergent result is not clear at this point. It may
also be interesting to examine Hartree effect for the
extended Hubbard model on which our calculation is
based; this is outside the scope of current work.
Our calculation is at T ¼ 0, and any Berezinski-

Kosterlitz-Thouless transition [37] would only be revealed
in a finite-T calculation. Also, like others, we take our the
system to be not strictly 2D, but quasi 2D, with the
assumption that a weak link along the third direction
stabilizes phase transitions like superfluidity. Our T ¼ 0
consideration does not lend itself to calculations of critical
temperature, Tc. However, based on other work [10,38], for
d-wave pairing we estimate that in electron systems, such
as the cuprates, Tc=TF � 0:015–0:03, giving a Tc �
15–30 K for a TF � 103 K; in cold fermions, Tc=TF �
0:01, giving a Tc � 30 nK for a TF � 3 �K. Thus, for
d-wave Tc measurements in cold fermions, realizing tem-
peratures below the currently attainable T=TF ’ 0:05 is
needed. However, these are lower bound estimates, and
we expect our proposed signatures to persist to higher
temperatures. Recent suggestions [39] of novel cooling
methods are encouraging.
Our calculations, in the spirit of BCS and BEC-BCS

crossover theories, consider d- and extended-s (s�-) wave
pairing symmetries, independent of pairing mechanisms.
Though mean field in nature, we expect the calculated
signatures of unconventional pairing symmetries to hold
in calculations beyond mean fields. A recent Monte Carlo
work [20] on fermions on 2D optical lattice, though at 1=2
filling, goes beyond mean field and contain substantial
discussions regarding possible phases.

FIG. 4. (a) Fourier transform �vðx; yÞ of a typical d-wave
fermion distribution function, v2

k. Here, filling f ¼ 0:01, � ¼
�4:2t (strong-coupling regime), gap � ¼ :76t. (b) Projection of
(a) to show a contrast ratio of �vðx; yÞ.

FIG. 3. (a), (b) 3D plots of d-wave fermion distribution func-
tions v2

k vs kx � ky at filling f ¼ 0:1, showing abrupt ‘‘jump’’ in

v2
k. In the BCS regime (a) � ¼ �3t, �d ¼ 5:2t, V ¼ 18:7t, and

in the BEC regime (b), � ¼ �6t, �d ¼ 0:6t, V ¼ 5:2t. (c), (d)
3D plots of d waves vk=uk vs kx � ky for the same parameters as

in (a) and (b), respectively. In the BCS regime (c) it can be seen
to be nonanalytic; in the BEC regime (d) it is analytic. (e), (f):
The same as in (a), (b), but for s� waves; the behavior is smooth.
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