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We propose a method to create a nontrivial Haldane phase in an atomic two-component Fermi gas

loaded on a one-dimensional optical lattice with trap potential. The Haldane phase is naturally formed on

a p-band Mott core in a wide range of the strong on-site repulsive interaction. The present proposal is

composed of two steps, one of which is theoretical derivation of an effective 1D S ¼ 1 interacting-chain

model from the original tight-binding Hamiltonian handling the two p orbitals, and the other of which is a

numerical demonstration employing the density-matrix renormalization group for the formation of the

Haldane phase on a p-band Mott core and its associated features in the original tight-binding model with

the harmonic trap potential.
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Ultracold Fermi gas loaded on optical lattice (FGOL) is
one of the most fascinating systems in modern physics [1].
Its controllability is far beyond our past image and expe-
rience in condensed matters. For instance, the two-body
interaction between Fermi atoms is widely variable from
strongly attractive to repulsive. Moreover, filling and popu-
lation imbalance are freely tunable, and lattice geometry is
highly flexible. Thus, FGOL is regarded as an outstanding
simulator for strongly correlated electronic materials, in
which a great number of controversial issues such as a
high-temperature superconducting mechanism in cuprate
superconductors still remain unsolved.

Very recently, there has been intense theoretical and
experimental interest in extending the energy band pro-
duced by the optical lattice (OL) potential from the
ground single band to higher multiple bands by utilizing
multidegenerate higher orbitals [2,3]. Such multiple orbi-
tal degeneracy allows us to study orbital degrees of free-
dom in addition to charge and spin degrees of freedom.
Then, FGOL becomes a more realistic and rich simulator,
in which orbital ordering and high-spin correlation are
accessible subjects like real solid-state matters including
transition metals and other heavy elements [4,5]. In this
Letter, we study one of the most fundamental issues
associated with the multiple band degeneracy. The present
target is formation of a gapped quantum phase using
double p-orbital degeneracy under a one-dimensional
(1D) system, as shown in Fig. 1. We show that an
effective low-energy Hamiltonian is given by the S ¼ 1
Heisenberg model and the gapped Haldane phase [6] is
widely sustained by the harmonic trap potential to confine
Fermi atoms. The fertility of the Haldane phase, i.e.,
gapful spin excitation, nonlocal string order, and

spin-1=2 edge magnetization induction [7–10], can be
systematically explored because of the wide controllabil-
ity in FGOLs.
Feasibility studies to create the Haldane phases in

atomic gas OLs have been made on spin-1 bosonic gases
loaded on a 1D OL with one atom per site [11], two-
component 1D FGOL utilizing first and second Bloch
bands with Feshbach resonance [12], and ultracold
fermionic 171Yb in a 1D OL [13]. The Haldane insulator,

FIG. 1 (color online). Schematic figures for a 1D Fermi gas.
(a) An optical lattice (OL) potential along the z direction and a
cylindrically symmetric vertical trap potential inside the xy
plane. The latter causes formation of discrete levels as depicted
in the right-hand panel, in which the lowest level is s orbital
while the higher two degenerate ones are px;y orbitals. The

Haldane phase is formed under fully filled s and partially filled
p orbitals (see text). (b) px;y orbitals formed inside the vertical

trap and their p bands creatd by the OL. When p bands are
active, this system is described by a multiband Hubbard chain
with the on-site intraorbital interaction (Upp) and the interorbital

one (Upxpy
) [see Eq.(2) and text].
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in which a charge gap opens according to Haldane’s
conjecture [6], was also predicted for bosonic gases with
dipole interaction [14–16] and multicomponent 1D FGOL
[17]. In this Letter, through the derivation of an effective
S ¼ 1 interacting-chain model and the numerical simula-
tions of a multiband Hubbard model, we show that the
Haldane phase is naturally formed in a two-component 1D
FGOL with the emergence of a p-band Mott core. We also
reveal features of the Haldane phase in trapped systems.

We start with the following Hamiltonian describing a 1D
elongated FGOL schematically depicted in Fig. 1,

H ¼ X

�¼";#

Z
dx

�
c y

�h0c � þ g

2
c y

�c
y
��c ��c �

�
; (1)

with h0 ¼ ð�@
2=2mÞr2 þ Vver þ Vopt and the coupling

constant of the two-body interaction g. The cylindrically
symmetric vertical trap (on the xy plane) and the OL
potential (along the z axis) are, respectively, Vver and Vopt.

A multiband Hubbard-type model is derived from
Eq. (1) using the expansion c � ¼ P

�;�

P
i c�;�;�;iu�w�;i,

where u� and w�;i are a wave function associated with the

eigensystem of ½ð�@
2=2mÞr2

? þ Vver�u� ¼ ��u� and a

Wannier function formed by the OL potential. The indices
� and � represent discrete levels caused by the trap po-
tential Vver and the Bloch band by the OL potential,
respectively. Here, Vver is not so tight that the second
p-orbital energy level does not exceed that of the second
Bloch band, and the second level is partially filled, as
shown in Fig. 1(b). Hereafter, ignoring the contribution
from higher Bloch bands, we drop the index �. Then,
including the second level corresponding to the pxðyÞ
orbital and taking the tight-binding approximation, we
obtain a multiband 1D Hubbard Hamiltonian (see the
Supplemental Material [18])
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where n�;�;i ð� cy�;�;ic�;�;iÞ is the on-site number-density

operator of the � orbital with pseudospin � and

S�;i ¼ 1
2

P
�;�0cy�;i;���;�0c�;i;�0 with Pauli matrices � is

the local spin-1=2 operator. The summation of � is taken
from the ground s orbital to the second degenerate p
orbitals (px and py) as shown in Fig. 1(c). t and U��0 are

the hopping and on-site interaction energy integrals

defined as t ¼ �R
dzwiþ1ð�@

2

2m
@2

@z2
þ VoptÞwi and U��0 ¼

g
R
dxw4

i u
2
�u

2
�0 , respectively. The in-plane cylindrical sym-

metry of u�ðx?Þ gives the relations Uspx
¼ Uspy

ð� UspÞ
andUpxpx

¼ Upypy
ð� UppÞ. A significant feature in Eq. (2)

is the existence of Hund-like terms �U��0S�;i � S�0;i,

which capture the so-called orbital physics. A
Hamiltonian similar to Eq. (2) may also appear in ultracold
fermionic 171Yb with 1S0 and

3P0 states [13,19].

Now, we derive a S ¼ 1 Heisenberg chain from
Eq. (2) in the strong coupling limit (U��0 � t). We
consider a case when the first orbital is fully occupied
and the second ones are half filled. Now, this system seems
to be similar to two Heisenberg chains coupled by ferro-
magnetic exchange interaction, which can produce the
Haldane phase [20]. In fact, the second order perturbation
scheme [21] leads to HJ ¼ Jex

P
hi;jiSi � Sj, where Jex ¼

2t2=ðUpp þUpxpy
Þ and the local spin-1 operator Si ¼

1
2

P
�¼px;py

P
�;�0 cy

�;�0;i��0�c�;�;i [18]. Hence, a gapped

Haldane phase can emerge for large Upp if the second p

levels are half filled. In FGOL experiments, this require-
ment is achievable in a central Mott core formed by inter-
play between a trap potential and large Upp.

Next, let us turn to the numerical demonstration of
the Haldane phase by the density-matrix renormalization-
group (DMRG) method [22,23]. Typical atomic-gas ex-
periments employ harmonic trap potential in all directions
to prevent escape of atoms. We add the harmonic trap
along the z axis, VhoðiÞ¼V½2=ðL�1Þ�2½i�ðLþ1Þ=2�2, to
our system, as well as the aforementioned vertical trap
Vver. Here L means the total number of sites. The total
Hamiltonian is HþP

�;�;iVhoðiÞn�;�;i. Again, we drop off

the terms in the Hamiltonian relevant to the first orbital
[18]. We simulate the model handling only second p
orbitals [24]. In the two-band Hubbard model, the on-site
intraorbital interaction Upp and interorbital interaction

Upxpy
are mutually connected via Upxpy

¼ 4
9Upp. We

note that U��0 ¼ g
R
dxw4

i u
2
�u

2
�0 [25].

Now, we present numerical results. We obtain a particle-
density distribution nðiÞ ¼ P

�¼px;py;�
n�;�;i and a spin-

density distribution mðiÞ ¼ P
�¼px;py

ðn�;";i � n�;#;iÞ using

DMRG simulations. Figure 2(a) shows nðiÞ for Upp=t ¼
15 and V=t ¼ 10. Owing to VhoðiÞ, a p-band Mott plateau
is formed in the trap center and surrounded by regions with
trap-gradient-dependent filling (below half). Varying an
input imbalance ratio p � P

imi=ni, which is initially
set in experiments, we measure the normalized polariza-
tion on the Mott core [26], M ¼ P

i2Mottmi=ni, as seen
in Fig. 2(b). For comparison, we also show in the inset the
result for Upxpy

¼ 0, which corresponds to two identical

1D Hubbard chains without coupling. A plateaulike
behavior occurs on the Mott-core polarization up to a
critical imbalance ratio pc ð’0:17Þ as expected in the
presence of the gap, while for Upxpy

¼ 0 the Mott core is

smoothly magnetized. A gapful phase for the spin flip
excitation is found in the p-band Mott-core region.
Thus, one of the key features of the Haldane phase is
shown.
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Let us more carefully examine the trap center and the

outer regions for a balanced case p ¼ 0 [SðzÞtotð�
P

iS
ðzÞ
i Þ ¼

0] and a slightly polarized case p ¼ 0:0125 [SðzÞtot ¼ 1].
First, we focus on the spin-density distribution profiles
on the p-band Mott core. Figure 3 shows that staggered
magnetization structures emerge at the edges of the p-band
Mott core and exponentially decay toward the trap center.
This structure is the same as the typical one observed at
open boundary edges in S ¼ 1 Heisenberg chains [9,10]
and is known to be induced by the S ¼ 1=2 fraction left at
open boundary edges. In the present case, the p-band Mott
core is not sharply terminated by the open boundary con-
dition. The edge magnetization amplitude in the induced
staggered structures is sizably reduced, compared to the
results of the S ¼ 1Heisenberg chain in the open boundary
case [9]. This difference comes from coupling between the
S ¼ 1=2 fraction left at the edges of the p-band Mott core
and a ferromagnetic metallic phase in the outer regions.
The ferromagnetic property in the outer regions is con-
firmed by calculating spin-gap energy �Ep ¼ Ep � Ep¼0,

polarization on outer regions, and the Mott-core polariza-
tion [18]. Here, Ep is the ground-state energy for the

population imbalance ratio p. This ferromagnetism is
also consistent with theoretical prediction for a uniform
hole-doped two-degenerate band system with strong
Hund’s coupling [27]. Next, let us examine the outer
regions to understand coupling between the ferromagnetic
metal and the S ¼ 1=2 fraction at the edge of the Mott

core. As for SðzÞtot ¼ 0, as shown in Fig. 3(a), the spin-
density profile is anticentrosymmetric. We calculate the
integral of m ðiÞ over the left (right) outer region, mL ðRÞ �P

i2left ðrightÞm ðiÞ. Then, we find that the left and right

regions, respectively, are polarized as one up spin

(mL ’ 1) and one down spin (mR ’ �1). For SðzÞtot ¼ 1, as
shown in Fig. 3(b), both regions are polarized as one up

spin (mL ¼ mR ’ 1). We always find similar features for
various p. The polarization difference becomes either
jmL �mRj ’ 0 or jmL �mRj ’ 2 as shown in Fig. 3(c).
These results mean that S ¼ 1=2 fractions left at the edges
of the p-band Mott core may spread over the outer regions.
We further characterize the ferromagnetic metal on the
outer regions. We compare the spin-gap energy with
Mott-core polarization. The ground-state degeneracy (i.e.,
�Ep ¼ 0) exists up to p ’ 0:11, as seen in Fig. 3(d),

while plateaulike behavior in Fig. 2(b) still continues up
to p ’ 0:17. This result implies that all spin degrees of
freedom in the system accumulate on the ferromagnetic
metal before p ’ 0:11. Therefore, the ferromagnetic metal
on the outer regions corresponds to an edge state in a
uniform S ¼ 1 Heisenberg model.
Here, we mention the case of small Upp=t. The Haldane

phase may survive in a small U region as discussed in the
case of multicomponent 1D FGOL [17]. We emphasize
that, for a wide range of the interaction strength and the
trap potential strength V=t, the gapped Mott core more or
less appears and the Haldane phase is realized in the central
core region [18].
We further increase the population imbalance ratio to

examine the spin-density distribution profiles before and
after pc. As for p ¼ 0:1625 (N" � N# ¼ 26), as seen in

FIG. 2 (color online). (a) A typical spatial distribution profile
of the particle density nðiÞ ¼ P

�¼px;py

P
� n�;�;i for balanced

160 fermions (80 " , 80 # ) with the interaction constants
Upp=t ¼ 15, Upxpy

¼ 4
9Upp, and the trap potential strength

V=t ¼ 10. (b) The Mott-core polarization M versus the popula-
tion imbalance ratio p. The employed parameters are the same
parameters as in (a) except for p. For comparison, the inset is the
case of Upp=t ¼ 15 and Upxpy

=t ¼ 0, which is equivalent with

two independent S ¼ 1=2 interacting chains.

FIG. 3 (color online). Distribution profiles of particle density
(dashed blue line) nðiÞ and spin density (solid red line) mðiÞ ¼
P

�¼px;py
ðn�;";i � n�;#;iÞ for spin imbalance (a) p ¼ 0 ðSðzÞtot ¼ 0Þ

and (b) p ¼ 0:0125 (SðzÞtot ¼ 1). The inset of (a) is a focus on the
spin density around the edge of the left Mott core. (c) The
polarization in the left (right) surrounding phase mL ðRÞ �P

i2left ðrightÞm ðiÞ versus the population imbalance ratio p.

(d) The spin gap �Ep � Ep � Ep¼0 versus the population im-

balance ratio p . All other physical parameters are the same as in
Fig. 2(a).
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Fig. 4(a), the central Mott core is not magnetized, and all
the polarization concentrates on the ferromagnetic metallic
phases, while the magnetization amplitude is considerably
enhanced compared to Fig. 3. A coupling with the Haldane
phase and polarized ferromagnetic metal brings about
the enhancement of the edge magnetization. On the other
hand, when p ¼ 0:475 ð>pcÞ, the staggered structure
disappears, and even the p-band Mott core is uniformly
magnetized, as shown in Fig. 4(b). As for an extremely
population imbalanced ratio p ¼ 0:9375, a periodical
oscillation appears inside the p-band Mott core as shown
in Fig. 4(c). This oscillation can be explained as follows.
A low-energy excitation of the spin-S Heisenberg
model under strong magnetic field is described by the
Luttinger liquid irrespective of the spin length S [28].
Then, this theoretical picture predicts that the periodicity
of a spin-density wave (SDW) is characterized by 2kF,
where kF is the Fermi wave vector in the equivalent spin-
less fermion system. In the present trapped systems, the
oscillation periodicity is given by the relation 2kF ¼
ð2�=LMottÞNMott;# [28,29], where LMott is the size of the

Mott core and NMott;# is the total number of spin-down

components inside the Mott core. Indeed, the magnetiza-
tion profile shows an expected oscillation. In Fig. 4(c), the
number of the minimum peaks of the SDW is 5. This
number should be almost equal to NMott;#. In fact, we can

directly evaluate NNott;# and find NMott;# ’ 5. A more sys-

tematic analysis on p dependence in such a SDW-like
oscillation is shown in Ref. [18].

In conclusion, we confirmed that the Haldane phase
emerges as a leading phase when utilizing second
degenerate p orbitals in 1D FGOL. At the half filling
condition for p orbitals in the large U limit, the multiband
Hubbard Hamiltonian was reduced to the S ¼ 1
Heisenberg chain model. Then, the emergence of the
Haldane phase and its associated physics were demon-
strated by DMRG studies on the original model together
with the harmonic trap potential. The polarization on the
outer regions is easily observed in experiments [30,31],
and spin-selective single-site addressing [32] can be
used to detect the staggered magnetization on the Mott
core. The formation of the Haldane phase in 1D FGOL

allows us to not only investigate its features but also open a
new avenue towards topologically protected quantum state
engineering [33].
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[3] G. Wirth, M. Ölschläger, and A. Hemmerich, Nat. Phys. 7,

147 (2011).
[4] K. Wu and H. Zhai, Phys. Rev. B 77, 174431 (2008).
[5] C. Wu, Phys. Rev. Lett. 100, 200406 (2008).
[6] F. D.M. Haldane, Phys. Lett. 93A, 464 (1983); Phys. Rev.

Lett. 50, 1153 (1983).
[7] H. Tasaki, Phys. Rev. Lett. 66, 798 (1991); T. Kennedy and

H. Tasaki, Phys. Rev. B 45, 304 (1992); Commun. Math.

Phys. 147, 431 (1992).
[8] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys.

Rev. Lett. 59, 799 (1987); Commun. Math. Phys. 115, 477
(1988).

[9] S. Miyashita and S. Yamamoto, Phys. Rev. B 48, 913
(1993).

[10] F. Tedoldi, R. Santachiara, and M. Horvatic, Phys. Rev.

Lett. 83, 412 (1999).
[11] J. J. Garcia-Ripoll, M.A. Martin-Delgado, and J. I. Cirac,

Phys. Rev. Lett. 93, 250405 (2004).
[12] A. F. Ho, Phys. Rev. A 73, 061601(R) (2006).
[13] H. Nonne, E. Boulat, S. Capponi, and P. Lecheminant,

Phys. Rev. B 82, 155134 (2010).
[14] E. G. D. Torre, E. Berg, and E. Altman, Phys. Rev. Lett.

97, 260401 (2006); E. Berg, E. G. D. Torre, T. Giamarchi,

and E. Altman, Phys. Rev. B 77, 245119 (2008).
[15] L. Amico, G. Mazzarella, S. Pasini, and F. S. Cataliotti,

New J. Phys. 12, 013002 (2010).
[16] Y.-W. Lee, Phys. Rev. B 77, 064514 (2008).
[17] H. Nonne, P. Lecheminant, S. Capponi, G. Roux, and E.

Boulat, Phys. Rev. B 81, 020408(R) (2010); 84, 125123
(2011).

[18] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.109.235302 for fur-

ther details of the model Hamiltonian and the systematic

simulation results.

FIG. 4 (color online). Particle density (dashed blue line) and
spin density (solid red line) distribution profiles for population
imbalance ratios (a) p ¼ 0:1625 (93 " , 67 # ), (b) p ¼ 0:475
(118 " , 42 # ), and (c) p ¼ 0:9375 (155 " , 5 # ). All other
parameters are the same as in Fig. 2(a).

PRL 109, 235302 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

7 DECEMBER 2012

235302-4

http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1080/00018730701223200
http://dx.doi.org/10.1103/PhysRevLett.99.200405
http://dx.doi.org/10.1103/PhysRevLett.99.200405
http://dx.doi.org/10.1038/nphys1857
http://dx.doi.org/10.1038/nphys1857
http://dx.doi.org/10.1103/PhysRevB.77.174431
http://dx.doi.org/10.1103/PhysRevLett.100.200406
http://dx.doi.org/10.1016/0375-9601(83)90631-X
http://dx.doi.org/10.1103/PhysRevLett.50.1153
http://dx.doi.org/10.1103/PhysRevLett.50.1153
http://dx.doi.org/10.1103/PhysRevLett.66.798
http://dx.doi.org/10.1103/PhysRevB.45.304
http://dx.doi.org/10.1007/BF02097239
http://dx.doi.org/10.1007/BF02097239
http://dx.doi.org/10.1103/PhysRevLett.59.799
http://dx.doi.org/10.1103/PhysRevLett.59.799
http://dx.doi.org/10.1007/BF01218021
http://dx.doi.org/10.1007/BF01218021
http://dx.doi.org/10.1103/PhysRevB.48.913
http://dx.doi.org/10.1103/PhysRevB.48.913
http://dx.doi.org/10.1103/PhysRevLett.83.412
http://dx.doi.org/10.1103/PhysRevLett.83.412
http://dx.doi.org/10.1103/PhysRevLett.93.250405
http://dx.doi.org/10.1103/PhysRevA.73.061601
http://dx.doi.org/10.1103/PhysRevB.82.155134
http://dx.doi.org/10.1103/PhysRevLett.97.260401
http://dx.doi.org/10.1103/PhysRevLett.97.260401
http://dx.doi.org/10.1103/PhysRevB.77.245119
http://dx.doi.org/10.1088/1367-2630/12/1/013002
http://dx.doi.org/10.1103/PhysRevB.77.064514
http://dx.doi.org/10.1103/PhysRevB.81.020408
http://dx.doi.org/10.1103/PhysRevB.84.125123
http://dx.doi.org/10.1103/PhysRevB.84.125123
http://link.aps.org/supplemental/10.1103/PhysRevLett.109.235302
http://link.aps.org/supplemental/10.1103/PhysRevLett.109.235302


[19] A. V. Gorshkov, M. Hermele, V. Gurarie, C. Xu, P. S.
Julienne, J. Ye, P. Zoller, E. Demler, M.D. Lukin, and
A.M. Rey, Nat. Phys. 6, 289 (2010).

[20] T. Barnes and J. Riera, Phys. Rev. B 50, 6817 (1994);
A. K. Kolezhuk and H.-J. Mikeska, Phys. Rev. B 53,
R8848 (1996); E. H. Kim, G. Fath, J. Solyom, and D. J.
Scalapino, Phys. Rev. B 62, 14965 (2000).
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