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We analyze precision bounds for a local phase estimation in the presence of general, non-Markovian

phase noise. We demonstrate that the metrological equivalence of product and maximally entangled states

that holds under strictly Markovian dephasing fails in the non-Markovian case. Using an exactly solvable

model of a physically realistic finite bandwidth dephasing environment, we demonstrate that the ensuing

non-Markovian dynamics enables quantum correlated states to outperform metrological strategies based

on uncorrelated states using otherwise identical resources. We show that this conclusion is a direct result

of the coherent dynamics of the global state of the system and environment and therefore the obtained

scaling with the number of particles, which surpasses the standard quantum limit but does not achieve

Heisenberg resolution, possesses general validity that goes beyond specific models. This is in marked

contrast with the situation encountered under general Markovian noise, where an arbitrarily small amount

of noise is enough to restore the scaling dictated by the standard quantum limit.
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Entangled states can achieve a resolution in metrology
that surpasses the precision limits achievable with uncor-
related probes, a significant result of both fundamental and
practical relevance first put forward by Caves [1]. The
potential usefulness of entangled states in overcoming
the shot noise limit in precision spectroscopy (also referred
to as standard quantum limit or standard scaling) was
proposed in Ref. [2], and the first experimental results
concerning precision measurements using entangled input
states have been presented recently [3]. However, the
saturation of the Heisenberg limit by maximally entangled
states assumes a fully coherent evolution, whereas in real
experiments there will always be some degree of decoher-
ence or a limitation on the total time over which measure-
ments can be performed. Precision spectroscopy in the
presence of Markovian dephasing was first analyzed in
Ref. [4], where it was shown that given a fixed number
of particles n and a total available time T for the frequency
estimate to be completed, uncorrelated and maximally
entangled preparations of n particles achieve exactly the
same precision when subject to Markovian dephasing.
Hence, these two preparations are metrologically equiva-
lent in those circumstances.

Here, we analyze if this equivalence persists when the
system is subject to non-Markovian noise. Under the same
rules as above, namely, fixed n and T, we show that in the
presence of realistic, finite temperature, finite bandwidth
environments, a measurement strategy can always be
found in which the use of n-particle entangled states leads
to a lower frequency uncertainty when compared to the
use of n uncorrelated input states. Moreover, we demon-
strate on very general grounds that for these strategies the
ratio between the optimal resolution of entangled and

uncorrelated probes obeys a characteristic power law /
n1=4. These results imply that entangled states can be used
to gain an advantage for precision measurements in the
presence of noise, and that entanglement-enhanced metrol-
ogy could be practically implemented in a wide variety
of condensed matter systems such as realizations of
solid-state qubits and biomolecular systems which are
typically subject to non-Markovian environments charac-
terized by long correlation times and/or structured spectral
features [5].
To show this, let us consider a system Hamiltonian!0�z

which is subject to a system-environment interaction that
induces pure dephasing, the form of noise that tends to
manifest at the shortest time scales in most qubit realiza-
tions. In this case, the coupling to the environment is of the
form�z � B, where B is some operator only including bath
degrees of freedom. Then, denoting by (j1i, j0i) the eigen-
basis of �z, quite generically, the time evolution of the
reduced density matrix of the system satisfies

�iiðtÞ ¼ �iið0Þ for ði ¼ 0; 1Þ; (1)

�01ðtÞ ¼ �01ð0Þe�2�ðtÞ: (2)

Now we consider a typical Ramsey spectroscopy setup for
n uncorrelated particles [6] to find that the resulting single
particle signal is given by

p0 ¼ 1=2

�
1þ cosð�tÞe��ðtÞ

�
; (3)

where � is the detuning between the frequency ! of the
external oscillator and the atomic frequency !0 to which
we intend to lock it to, and t is the time between Ramsey
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pulses [4]. Using the same notation as in Ref. [4], the best
resolution in the estimation of!0 is given by the expression

�!2
0 ¼

1

NFð�Þ ; (4)

where N is the total number of experimental data ðtN ¼
ðT=tÞnÞ and F is the so-called Fisher information [7]. This
quantity can be easily evaluated in our case as

Fð�Þ ¼ X
i¼0;1

1

pi

�
@pi

@�

�
2
: (5)

We then find the frequency uncertainty to be

�!2
0 ¼

1� cos2ð�tÞe�2�ðtÞ

nTtsin2ð�tÞe�2�ðtÞ : (6)

We wish to determine the best operating point � and the
best interrogation time tu which minimize Eq. (6), as these
two quantities are under experimental control. To this end,
one computes the derivatives of �!2

0, with respect to� and

t, and then equates these derivatives with 0. Independently
of the choice of �ðtÞ, we conclude from the derivative of
�!2

0, with respect to �, that

�tu ¼ k�

2
(7)

for odd k or, in other words, the choice that ensures
cos�tu ¼ 0 is optimal. Inserting �tu ¼ k�

2 in the expres-

sion for the derivative with respect to tu to eliminate �,
these expressions simplify considerably and we obtain the
second constraint

2t
d�ðtÞ
dt

��������t¼tu

¼ 1: (8)

Using the Eq. (7) in Eq. (6) we have

�!2
0ju ¼

1

nTtu
e2�ðtuÞ; (9)

where the optimal interrogation time tu is determined by
Eq. (8). The Markovian case is recovered from these equa-
tions for �ðtÞ ¼ �ð0Þt and the expressions above reduce to
those presented in Ref. [4].

An analogous calculation can be done for an initial
preparation of n particles in a maximally entangled state
j0i�n þ j1i�n, leading to the result that the optimal fre-
quency resolution is

�!2
0je ¼

1

n2Tte
e2n�ðteÞ; (10)

where the optimal interrogation time for entangled parti-
cles te is determined by the constraint,

2nt
d�ðtÞ
dt

��������t¼te

¼ 1: (11)

In the Markovian case, the additional factor of n in the
denominator of Eq. (10) is canceled out due to an accom-
panying decrease in te by a factor of n relative to tu. The

optimal frequency resolution is therefore identical to that
obtained with uncorrelated particles, and thus maximally
entangled and uncorrelated states are metrologically
equivalent in the presence of local Markovian dephasing.
Although Markovian dephasing does not allow any advan-
tage to be gained from using maximally entangled states, the
conclusions drawn above are very general, as the expres-
sions involved do not depend on the precise form of the
decoherence model. Provided that it generates Markovian
dephasing, the bath operator B could be highly nonlinear,
with a complex spectral structure, quantum or classical.
We now move beyond the standard Markovian treatment

and consider the performance of maximally entangled
states in the presence of non-Markovian dephasing. We
shall first study some specific, exactly solvable models,
which demonstrate that entangled and uncorrelated probes
are no longer metrologically equivalent in the presence of
non-Markovian dynamics, and then discuss why this result
is in fact independent of the microscopic details of the
environment for most realistic system-bath structures.
An exactly solvable model.—Let us first consider the

exactly solvable model (independent boson model) [8].
Here the bath operator B is simply a sum of linear cou-
plings to the coordinates of a continuum of harmonic
oscillators described by a spectral function Jð!Þ [8–10].
Then we have

�ðtÞ ¼ 1

2

Z 1

0
d!Jð!Þ coth

�
!�

2

�
1� cosð!tÞ

!2
; (12)

where � is the inverse temperature.
Power-law spectral densities with exponential cutoffs.—

The coupling to a bath of harmonic oscillators is the most
common setting used in the study of open-quantum sys-
tems, and an extremely large number of physical environ-
ments can be described by a general power-law form for the
spectral density [9,10]. Following Ref. [8], we therefore

consider Jð!Þ ¼ �!1�s
c !se�!=!c , where� is a dimension-

less coupling constant and!c cuts off the spectral density at
high frequencies. For zero temperature, t > 0 and s > 0, we
obtain the result

�ðtÞ ¼ �

2

�
1� cos½ðs� 1Þtan�1ð!ctÞ��ðs� 1Þ

ð1þ!2
ct

2Þðs�1Þ=2

�
; (13)

where �ðs� 1Þ is the Euler Gamma function. Taking the
limit s ! 1 carefully, one also finds

�ðt; s ¼ 1Þ ¼ �

2
lnð1þ!2

ct
2Þ: (14)

FromEq. (14) one immediately sees that at short (!ct � 1)
and long (!ct � 1) times,�ðtÞ has a power law dependence
on time, and it is therefore instructive to analyze a generic
�ðtÞ of the form �ðtÞ ¼ �t	. We define the relative
frequency resolution of entangled and uncorrelated probes
r ¼ j�!0ju=j�!0je. We then find

PRL 109, 233601 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

7 DECEMBER 2012

233601-2



r2 ¼ n

�
te
tu

�
e2�ðtuÞ�2n�ðteÞ: (15)

In the absence of dephasing noise, r ¼ ffiffiffi
n

p
(Heisenberg

limit), while in theMarkovian case themetrological equiva-
lence of the correlated and entangled probes is presented by
the result r ¼ 1. Using the constraint equations (8) and (11),
it can be seen that for the general power law form of
�ðtÞ ¼ �t	, we always obtain�ðtuÞ ¼ n�ðteÞ and the expo-
nential term in Eq. (15) always equals unity. Hence, r is
determined by the ratio of best interrogation times tu=te.

Similarly, one can show that the ratio tu=te ¼ n1=	 and,

therefore, r2 ¼ n	�1=	. From this result we see that only
for 	 > 1 there is an advantage in using entangled probes,
and r approaches the Heisenberg limit from below as
	 ! 1. The case of 	 ¼ 1 corresponds to the Markovian
case, while 	 < 1 always favors uncorrelated probes.

With this analysis we can use Eq. (13) to assess r as a
function of the bath exponents s. For short times, expand-
ing Eq. (13) to the leading-order in !ct, it can be seen that
for all spectral densities �ðtÞ / t2, and one then obtains

r ¼ n1=4. The necessary interrogation times for entangled
states satisfy te / ð!c

ffiffiffi
n

p Þ�1, which is consistent with the
short time approximation of �ðtÞ. In many cases, and
particularly in molecular and magnetic systems, the con-
ditions on the measurement time may be met easily with
current experimental methods due to the sluggishness of
the dephasing environments. We also note that in the limit
of a static bath which induces Gaussian inhomogeneous
broadening, �ðtÞ / t2 even for long times [11].

For times much greater than !�1
c , we find that �ðtÞ /

t1�s for 0< s < 1. For this case, known as sub-Ohmic
dissipation [9,10], uncorrelated probes are always favored,
while for s ¼ 1 we can analytically evaluate the optimal
interrogation times for each initial preparation without
considering the long or short time limits. The exact result is

r ¼ ffiffiffi
n

p
fð�; nÞ; (16)

where

fð�; nÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi" ð2�=ð2�� 1ÞÞ�
ð2n�=ð2n�� 1ÞÞn�

# ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2�� 1Þ=ð2n�� 1Þpvuut ;

(17)

and �> 1=2 [12]. The results are shown in Fig. 1, illus-
trating that maximally entangled states in the presence of
zero temperature Ohmic baths outperform uncorrelated

probes for any n, with r ! n1=4 as n ! 1 and/or � ! 1.
Lorentzian spectral density.—Nowwe consider the spec-

tral density

Jð!Þ ¼ 1

�

ag

g2 þ!2
;

where a regulates the coupling strength. We then find for
T ¼ 0 that

�ðtÞ ¼ a

4g

�
1

g
ðe�gt � 1Þ þ t

�
(18)

for g � 0 and t � 0. Now, inserting the necessary condi-
tion �t ¼ �=2 in the expression for �!2

0 we obtain

�!2
0ju ¼

1

nTt
eað�1þe�gtþgtÞ=2g2 :

The second necessary condition for an optimum imposes
that the optimal time satisfies

atð1� e�gtÞ ¼ 2g:

This is a transcendental equation but, if we are interesting
in the short time behavior gt � 1, then we find in lowest
order as an approximate solution

t2 ¼ 2

a

and employing the Newton method on the function fðtÞ ¼
atð1� e�gtÞ � 2g with starting point t ¼

ffiffi
2
a

q
we find the

improved value

t ¼
ffiffiffi
2

a

s 0
@1þ

ffiffiffiffiffiffi
g2

8a

s 1
A:

Inserting this into the expression for �!2
0 we find

�!2
optju ¼ 1

nT

ffiffiffi
a

2

r ffiffiffiffiffiffi
8a

p
ffiffiffiffiffiffi
8a

p þ g
eg=3

ffiffiffiffiffiffi
2=a

p
�1:

Repeating the calculation for a maximally entangled state,
we obtain in the short time limit gt � 1,

FIG. 1 (color online). Ratio r between the optimal resolution
achievable with uncorrelated and maximally entangled inputs as
a function of the number of particles n. The dashed line shows
the expected behavior in the absence of noise where r ¼ ffiffiffi

n
p

(Heisenberg limit), while r becomes equal to 1 (pink line) when
the noise is fully Markovian. In the presence of non-Markovian
phase decoherence, product states and maximally entangled
initial preparations are no longer metrologically equivalent. In
the case of a zero temperature bath with an Ohmic spectral
density (s ¼ 1), maximally entangled states allow for a higher
resolution for any value of n and r displays a typical n1=4

dependence as shown by the solid line in the figure.
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�!2
optje ¼ 1

nT

ffiffiffiffiffiffi
a

2n

r ffiffiffiffiffiffiffiffiffi
8an

p
ffiffiffiffiffiffiffiffiffi
8an

p þ g
eg=3

ffiffiffiffiffiffiffiffi
2=an

p
�1:

We find an improved precision for maximally entangled
states as �!2

opt is reduced by a factor
ffiffiffi
n

p
whenever 8an �

g2. If that last condition is not satisfied, the above approxi-
mate expressions fail to hold, as then g becomes large. A
numerical calculation reveals that for 8an � g2, maxi-
mally entangled and product states achieve the same pre-
cision and the optimal interrogation time becomes large.
That entangled and product states then achieve the same
precision can be expected as memory effects in the bath
become negligible for large interrogation times.

Beyond specific models.—The key point illustrated by
the examples above is that maximally entangled states
achieve their optimal interrogation time at shorter time
intervals than uncorrelated states and can hence benefit
more from non-Markovian noise features. This is due to
the characteristic behavior �ðtÞ / t2 which governs short
times in the models above, and which leads to a decrease in
the optimal interrogation time for entangled particles that

only scales as n�ð1=2Þ (cf. te / n�1 for the Markovian case).
However, the quadratic behavior of �ðtÞ is not a specific

feature of our chosen noise model, but rather a general
consequence of the unitary evolution of the total system
and environment state. The essential observation is that the
function �ðtÞ appears in the dynamics of the subsystem as
the result of transitions induced in the bath by the system-
bath interaction. At a short time t after the system-bath
interaction is switched on, the probability for the bath state
to make a transition to any state orthogonal to its initial
condition is always proportional to t2. This universal time
dependence for quantum mechanical transitions is the
fundamental basis of the quantum Zeno effect, and has
been extensively and rigorously investigated [13,14].
Hence, for essentially all noise sources treated within the
standard framework of open-quantum system theory,
entangled-state input protocols can always be found which
outperform uncorrelated probes, whatever the microscopic
details of the bath and the system-bath interaction.

This general result leads to the concept of a new funda-
mental limit for quantum metrology in the presence of
noise, which for simplicity we shall refer as the Zeno limit.
For sufficiently fast interrogation times, we find the model-

independent scaling law for the Zeno limit r ¼ n1=4, which
is below the Heisenberg limit r ¼ ffiffiffi

n
p

, but always above
the Markov limit r ¼ 1. For the specific noise models
studied above, we also find that te can be simply related
to r through the relation r2!cte ¼ 1 at T ¼ 0 K. Again,
given the universal scaling law for r, a relation of this form
should also be expected to hold for other noise models,
except that !c should be replaced by the fastest dynamical
frequency of the environment in these models. It is worth
noting that if the effect of decoherence if formally thought
of as the action of environmental projective measurements,
our result showing a ratio te=tu ¼ 1=

ffiffiffi
n

p
for the optimal

interrogation time of maximally entangled and product
states is in agreement with recent work deriving the time
scale for quantum Zeno dynamics in terms of the Fisher
information [15].
Finite temperatures.—The arguments given above also

naturally apply to the case of finite temperatures, where
againwefind that a Zeno limit emerges.However, the typical
energy scale that determines the optimal interrogation time
te now depends explicitly on temperature. This can be seen
directly in the high temperature limit of our exact model,
where the factor cothð�!c=2Þ in Eq. (13) can be expanded
to leading order in�!c over the entire integration range. For

an Ohmic bath this leads to �ðtÞ ¼ ���1ðttan�1ð!ctÞ �
lnð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ!2
ct

2
p Þ!�1

c Þ. Again, a Zeno limit appears at short
times with �ðtÞ � ���1!ct

2=2, which leads to the result

te ¼
ffiffiffiffiffiffiffiffiffiffiffi

�
4�n!c

q
. This result, derived in the high temperature

limit, is consistent with our notion that it is the fastest time
scale of the bath dynamics that sets the scale for the Zeno-
limit interrogation time. If the system is interrogated slower
than this time scale, we find that entangled and uncorrelated
probes become equivalent again as�ðtÞ � ���1!ct at long
times and the Markov result is recovered.
One question remains though and that concerns the

evaluation of the optimal resolution achievable in the
presence of a given form of non-Markovian dephasing
provided that both the initial state preparation and the final
measurement can be optimized. This is likely to be a
complicated question, and in fact it has taken almost 15
years to rigorously prove that, in the purely Markovian
case, as argued in Ref. [4], the improvement obtained by
using partially entangled states over product states and
projective measurements is a mere constant equal to

ffiffiffi
e

p
[16]. We believe that a similar situation will be encoun-

tered in the present case, so that the scaling n1=4 will be
robust and optimized preparations and measurements will
determine the exact value of the multiplicative factor to be
of the order of 1. We leave this as an open question and
suggest that the use of convex optimization techniques [17]
may help to prove this conjecture for those noise models
whose effect can be represented as a completely positive
and trace preserving quantum channel.
Conclusions.—Using an exactly solvable model of non-

Markovian dephasing, we have shown that entangled probes
can outperform uncorrelated preparations provided the sys-
tem is interrogated on time scales faster than the character-
istic frequencies of the bath dynamics. This conclusion holds
for both zero and finite temperatures, and is also valid for
any other noise model arising from an open-quantum sys-
tem structure. This result can be naturally understood as

emerging from the scaling te / n�1=2 in the number of
correlated particles, which causes the entangled probes to
experience a suppressed level of decoherence relative to the
uncorrelated case, which in turn have to be measured at

much longer times. Thus we argue that the result r ¼ n1=4
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for rapid measurements is a new, fundamental metrological
limit for entangled particles subject to independent non-
Markovian decoherence sources. We should stress that this
result is in sharp contrast with the situation encountered in
the presence of general Markovian noise, where an arbi-
trarily small noise level is enough to restore the standard
scaling [17]. Beyond the theoretical interest, we should
stress the immediate practical relevance of our analysis,
as the properties of non-Markovian noise which are crucial

for obtaining the n1=4 scaling are extremely generic andwill
be found in almost any realistic open quantum system. This
work shows that an advantage can be obtained in real-world
systems with a relatively simple, intuitive preparation and
measuring protocol, and considerably expands the number
of systems in which quantum metrology could be pursued.
Moreover, at the heart of this theory is the notion of probing
the system on times which are faster than the typical mem-
ory times (assumed infinitely fast in the Markovian case) of
the environment. In this regime, which we refer to as the
Zeno limit, themetrological scaling advantage appears due to
the characteristic time-dependence of coherently-evolving
transition probabilities, which develop like t2. This is a
consequence of the standard microscopic model of open
quantum systems, which posits that the total state of the
system and environment evolves coherently, and that deco-
herence only emerges after the bath is traced over on time
scales longer than the memory time. From the point of view

of open quantum system theory, observing the n1=4 scaling in
metrology verifies the microscopic picture of how decoher-
ence and dissipation emerge in small quantum systems.
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