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A power expansion scheme is set up to determine the Wigner function that satisfies the quantum kinetic

equation for spin-1=2 charged fermions in a background electromagnetic field. Vector and axial-vector

current induced by magnetic field and vorticity are obtained simultaneously from the Wigner function.

The chiral magnetic and vortical effect and chiral anomaly are shown as natural consequences of the

quantum kinetic equation. The axial-vector current induced by vorticity is argued to lead to a local

polarization effect along the vorticity direction in heavy-ion collisions.
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Introduction.—Chiral anomaly is an important quantum
effect, which is absent at the classical level. Recently, it has
been shown that such a microscopic quantum effect can
have a macroscopic impact on the dynamics of relativistic
fluids, termed as the chiral magnetic and vortical effect
(CME and CVE) [1–3] as manifested in currents induced
by magnetic field and vorticity. Such effects and related
topics have been investigated within a variety of approaches,
such as AdS-CFT duality [4–8], relativistic hydrodynamics
[9–11], and quantum field theory [2,12–17]. However, it is
still not clear how CME and CVE can emerge from a
microscopic quantum kinetic theory.

In this Letter, we make a first attempt to derive both the
CME and CVE from a quantum kinetic theory. A power
expansion in space-time derivatives and weak external
fields is used to determine the analytic form of vector
and axial-vector components of the Wigner function that
satisfies the quantum kinetic equation for spin-1=2 mass-
less fermions. The CME and CVE appear naturally in the
induced currents. Chiral anomaly and other conservation
laws are also automatically satisfied. The axial-vector cur-
rent induced by vorticity depends quadratically on the
temperature, baryonic and chiral chemical potential. So it
should be present in both hot and dense matter, and can
lead to a local polarization effect in heavy-ion collisions as
proposed in earlier studies [18–20]. This provides another
possible future experimental measurement of the CVE in
high-energy heavy-ion collisions.

The quantum kinetic approach can provide a bridge
between the microscopic and macroscopic description of
the CME and CVE and should be more suitable for future
simulations of both effects in heavy-ion collisions. The
power expansion method can also be applied to the calcu-
lation of other transport coefficients.

Quantum kinetic equation.—In a quantum kinetic the-
ory, the classical phase-space distribution fðx; pÞ is
replaced by the Wigner function Wðx; pÞ in space-time x
and four-momentum p, defined as the ensemble average of
the Wigner operator [21–23] for spin-1=2 fermions,

Ŵ�� ¼
Z d4y

ð2�Þ4 e
�ip�y �c �ðxþÞUðxþ; x�Þc �ðx�Þ; (1)

where c � and �c � are Dirac spinor fields, x� � x� 1
2 y are

two space-time points centered at x with space-time sepa-
ration y, and the gauge link U,

Uðxþ; x�Þ � e
�iQ

R
xþ
x�

dz�A�ðzÞ; (2)

ensures the gauge invariance of Ŵ��. Here, Q is the

electromagnetic charge of the fermions, and A� is

the electromagnetic vector potential. Note that we use
the metric convention g�� ¼ diagð1;�1;�1;�1Þ. To sim-
plify the quantum kinetic equation under a background
field we consider a massless and collisionless fermionic
system in a constant external electromagnetic field F�� in

the lab frame. Since we only consider a classical back-
ground field, we have dropped the path ordering in the
gauge link in Eq. (2). The Wigner function is a matrix in
Dirac space and satisfies the quantum kinetic equation
[21–23],

��

�
p� þ i

2
r�

�
Wðx; pÞ ¼ 0; (3)

where ��’s are Dirac matrices and r� � @�x �QF�
�@

�
p.

The Wigner function should contain information about
quantum interactions and we will prove that all currents
including chiral anomaly can be derived from the above
equation. To this end, we decompose the Wigner function
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in terms of 16 independent generators of the Clifford
algebra,

Wðx; pÞ ¼ 1

4

�
F ðx; pÞ þ i�5P ðx; pÞ þ ��V�ðx; pÞ

þ �5��A�ðx; pÞ þ 1

2
���S��ðx; pÞ

�
: (4)

Equation (3) then leads to two decoupled sets of equations
[21–23], one relevant to our study reads

p�V� ¼ 0; p�A� ¼ 0; (5)

r�V� ¼ 0; r�A� ¼ 0; (6)

���	�r	A� ¼ �2ðp�V � � p�V�Þ; (7)

���	�r	V � ¼ �2ðp�A� � p�A�Þ; (8)

where ���	� is the Levi-Civita antisymmetric tensor,
V�ðx; pÞ and A�ðx; pÞ are the vector and axial-vector

component of the Wigner function, which will give rise to
the vector and axial-vector current, respectively, after inte-
gration over four-momentum.

Power expansion.—We assume a system close to local
equilibrium under a constant external field F��. Therefore,
V�ðx; pÞ and A�ðx; pÞ will depend on x only through

fluid four-velocity uðxÞ, temperature TðxÞ, chemical poten-
tial �ðxÞ, and chiral chemical potential �5ðxÞ. We will
determine the analytic form of the Wigner function in
terms of fp; F��; u; T;�;�5g from the kinetic equation.

We further assume that the space-time derivative @x and
the field strength F�� are small variables of the same order

and can be used as parameters in the power expansion of
V� andA� (similar to the Knudsen number expansion in

hydrodynamics),

V� ¼ V�
0 þV�

1 þ � � � ;
A� ¼ A�

0 þA�
1 þ � � � ;

(9)

where the subscripts 0; 1; . . . denote orders of the power
expansion. Note thatV�

n andA�
n are related toA�

n�1 and

V�
n�1 via Eqs. (7) and (8) (n � 1). One can therefore use

an iterative scheme to solve V� and A� order by order.

Note that the field strengths F�� are assumed to be
constant in the lab frame. Later, we have to define electro-
magnetic fields in the local comoving frame of a fluid cell,
E� ¼ u	F�	, B� ¼ ð1=2Þ����	u

�F�	, which depend on

x via the fluid velocity uðxÞ. The space-time derivative @x is
then given by

@x� ¼ @�T
@

@T
þ @�u	

@

@u	
þ @��

@

@�
þ @��5

@

@�5

:

(10)

Zeroth-order Wigner function.—In general, V�
0 and

A�
0 can only have two terms, each proportional to the

zeroth-order four-vectors p� or u� with a total of four
independent coefficients. Since the left-hand sides of
Eqs. (7) and (8) are at least of first order, the zeroth-order
terms on the right-hand sides must vanish, which set the
coefficients of the u� terms to be zero. With additional
constraints by Eq. (5), V�

0 and A�
0 have to take the

following forms:

V �
0 ¼ p�
ðp2ÞV0; A�

0 ¼ p�
ðp2ÞA0; (11)

where V0 and A0 are the phase-space distributions of
massless spin-1=2 fermions at the zeroth order and cannot
be determined by Eqs. (5)–(8). We assume they take the
equilibrium form,

½V0; A0� ¼
X

s¼�1

�ðsu � pÞ½ðfs;R þ fs;LÞ; ðfs;R � fs;LÞ�;

fs;� ¼ 2

ð2�Þ3
1

esðu�p���Þ=T þ 1
; ð� ¼ R; LÞ; (12)

where RðLÞ denotes the right(left)-handed fermions and
�R;L ¼ ���5 [2]. Note that V0 (A0) is the sum (differ-

ence) of two positive distributions for any values of � and
�5. This asymmetry between V0 and A0 as inputs to the
iterative operation will feed down to the first-order Wigner
functions V�

1 and A�
1 and the final vector and axial-

vector currents, even though the kinetic equations in
Eqs. (5)–(8) are symmetric for V� and A�.
The zeroth-order Wigner functions should also satisfy

Eq. (6), which provides constraints on fluid and thermody-
namical variables. Substituting Eqs. (11) and (12) into
Eq. (6), we obtain r�V

�
0 and r�A

�
0 as sums of six

independent terms involving the momentum vector �p� �
��	p

	 (��	 � g�	 � u�u	), tensor �p� �p	, scalars �p2, and

u� p
�. To ensure r�V

�
0 ¼ r�A

�
0 ¼ 0 for any values of

p, these six terms all have to vanish, resulting in the
following constraints at the first order:

����	�

�
@�u� þ @�u� � 2

3
����

�
@�u


�
¼ 0;

T��	@	
�

T
þQE� ¼ 0;

u	@
	u� � ��	@	 lnT ¼ 0;

@�
�5

T
¼ 0; u	@

	 �

T
¼ 0;

u	@
	T þ 1

3
T�	�@	u� ¼ 0:

(13)

Note that we have dropped 
ðp0Þ terms from derivatives of
�ðp0Þ and �ð�p0Þ, which are irrelevant when carrying out
the four-momentum integration due to vanishing phase
space at zero momentum. Since we are interested in cur-
rents induced by external fields and vorticity, we consider
only the static case with a constant temperature. The above
constraints are reduced to
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u	@
	u� ¼ 0; @�u

� ¼ 0; @�� ¼ �QE�;

�5 ¼ const; ðfor T ¼ constÞ; (14)

which has a simple solution � ¼ const�QEx and a so-
lenoidal fluid velocity.

First-order Wigner function.—With the zeroth-order
Wigner functions in Eqs. (11) and (12) one can determine
the first order V�

1 and A�
1 from Eqs. (5)–(8). A general

form linear in the first-order variables X� ¼ ðE�; B�;!�Þ
and constrained by Eq. (5) can be written as

Z�
1 ¼ X

X¼E;B;!

½u�ðg�� � p�p�=p2Þp2ð �p	X
	ÞZX1

þ X�ðg�� � p�p�=p2Þp2ZX2

þ X�ðg�� � �p� �p�= �p2Þ �p2ZX3

þ ��
	�u
p	X�ZX4�; (15)

where Z�
1 ¼ ðV�

1 ;A
�
1 Þ and !� ¼ ð1=2Þ���	�u

�@	u� is

the fluid vorticity. Note that X	u
	 ¼ 0. There are 24 inde-

pendent coefficients ZXi ¼ ðVXi
; AXiÞ (i ¼ 1, 2, 3, 4) in the

above power expansion of the first order. With Eqs. (11)
and (15) for the zeroth- and first-order Wigner functions,
both Eqs. (7) and (8) at the first order contain 3 different
tensor structures, each consisting of terms linear in three
independent variables X� ¼ ðE�; B�;!�Þ. Setting these
terms to vanish separately gives 18 equations which leave
only 6 of the 24 coefficients in Eq. (15) undetermined.
Further requiring Eq. (6) be satisfied by V�

1 and A�
1 , we

can obtain the unique forms of V� and A� to the first

order,

Z� ¼ p�
ðp2ÞZ0 þ 1

2
p�½u�!� � u�!�� @ �Z0

@ðu	p	Þ
ðp
2Þ

�Qp�½u�B� � u�B�� �Z0

0ðp2Þ

þQ��
	�u
p	E�
�Z0


0ðp2Þ; (16)

where Z ¼ ðV ;AÞ, Z0 ¼ ðV0; A0Þ and �Z0 ¼ ðA0; V0Þ.
Induced currents, CME and CVE.—We can derive the

vector and axial-vector current from the above Wigner
functions up to the first order in power expansion,

j� ¼
Z

d4pV� ¼ nu� þ �!� þ �BB
�; (17)

j
�
5 ¼

Z
d4pA� ¼ n5u

� þ �5!
� þ �B5B

�: (18)

The energy-momentum tensor T�� can also be evaluated,

T�� ¼ 1

2

Z
d4pðp�V � þ p�V�Þ

¼ ð�þ PÞu�u� � Pg�� þ n5ðu�!� þ u�!�Þ
þ 1

2
Q�ðu�B� þ u�B�Þ: (19)

The charge n, n5 and energy density � in equilibrium,

N0 ¼ 2�
Z

dp0p
i
0½�ðp0Þ � �ð�p0Þ�ZN0; (20)

are determined from the zeroth-order Wigner functions,
where N0 ¼ n, n5, � corresponding to i ¼ 2, 2, 3 and
ZN0 ¼ V0, A0, V0, respectively. The pressure is given by
P ¼ �=3. Coefficients �, �B, �5, and �B5 are given by

� ¼ c�
Z

dp0p
j
0½�ðp0Þ � �ð�p0Þ�Z�0; (21)

where � ¼ �, �B, �5, �B5 corresponding to j ¼ 1, 0, 1, 0,
c ¼ 2, Q, 2, Q, and Z�0 ¼ A0, A0, V0, V0, respectively.
It is easy to verify following relations: � ¼ ð1=2Þ@n5=@�,
�5 ¼ ð1=2Þ@n=@�, �B ¼ ðQ=2Þ@�=@�, and �B5 ¼
ðQ=2Þ@�5=@�.
One can complete the above integrals analytically to

obtain coefficients �, �B, �5, and �B5 of the induced
currents as functions of �, �5, and T,

� ¼ 1

�2
��5; �B ¼ Q

2�2
�5; (22)

�5 ¼ 1

6
T2 þ 1

2�2
ð�2 þ�2

5Þ; �B5 ¼ Q

2�2
�: (23)

Thermodynamical quantities n, n5, and � can be similarly
obtained.
The current in Eq. (17) induced by magnetic field and

vorticity with coefficients �B and � in Eq. (22), known as
the CME and CVE [2,3,9], respectively, is a direct conse-
quence of the quantum kinetic equation for the Wigner
function. The axial-vector current in Eq. (18) induced by
magnetic field and vorticity corresponds to some sort of
reversed CME and CVE, respectively. These results are
consistent to those obtained from the second law of ther-
modynamics in Refs. [10,24] except a quadratic term in
temperature in �5 induced by vorticity. It should be noted
that Eqs. (22) and (23), including the temperature term in
�5, have also been obtained independently in Ref. [17]
within the Kubo formalism.
Conservation equations for j� and j

�
5

@�j
� ¼ 0; @�j

�
5 ¼ � Q2

2�2
E	B

	; (24)

can be derived from Eqs. (17) and (18) with constraints on
fluid and thermodynamical variables in Eq. (14). The
electric field in the chiral anomaly appears through @�� ¼
�QE� from Eq. (14). Note that we derived the chiral
anomaly here without regularization in contrast to the
derivation in quantum field theory. This is because the
Wigner function contains two fermionic fields separated
in space-time (nonlocal) and therefore free of singularities.
One can also verify the energy-momentum conservation
equation in the background field,

@�T
�� ¼ QF�	j	; (25)
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from Eqs. (17) and (19) with constraints in Eq. (14). It is
interesting to observe that constraints in Eq. (13) or (14)
require !�kB�kE�, which is crucial for the energy-
momentum conservation in Eq. (25).

It is remarkable that we have derived from the quantum
kinetic equation not only currents in Eqs. (17) and (18)
with their coefficients in Eqs. (22) and (23) but also a
complete set of conservation equations with the chiral
anomaly in Eqs. (24) and (25) for charge, chiral charge
and energy-momentum, respectively. In contrast, these
conservation equations are used as inputs to obtain the
currents in Refs. [9,10] with the requirement of the second
law of thermodynamics.

Multi-flavor fluid.—So far we have only considered a
fluid with a single type of fermion. An extension to the case
of multiflavor quarks is straightforward. We can consider a
three-flavor (Nf ¼ 3) fluid with u, d, and s quark and their

antiquarks. Note that each quark carries Nc fundamental
color charges. For the induced electromagnetic and bar-
yonic vector current j�,

�baryon ¼ NcNf

3�2
��5; �baryon

B ¼ Nc

6�2
�5

X
f

Qf;

�EM ¼ Nc

�2
��5

X
f

Qf; �EM
B ¼ Nc

2�2
�5

X
f

Q2
f:

(26)

For this three-flavor quark matter we have
P

fQf ¼ 0, and

�baryon
B ¼ �EM ¼ 0. This implies that the CME (CVE)

dominates the electromagnetic (baryonic) current [3]. For
the induced baryonic axial-vector current j�5 ,

�5 ¼
NcNf

3

�
1

6
T2 þ 1

2�2
ð�2 þ�2

5Þ
�
;

�B5 ¼ Nc

6�2
�
X
f

Qf ¼ 0:
(27)

Therefore, magnetic fields cannot induce the axial-vector
current in a three-flavor quark matter, which can only be
induced by vorticity.

Local polarization effect.—An axial-vector current in-
duced by vorticity implies that the right(left)-handed

fermions move parallel (opposite) to the direction of vor-
ticity. Since the momentum of a right(left)-handed mass-
less fermion is parallel (opposite) to its spin, all spins are
parallel to the direction of vorticity (see Fig. 1 for illus-
tration). This results in the local polarization effect (LPE)
similar to what was proposed in Refs. [18–20] due to spin-
orbital coupling. The LPE can be measured via hadron
(e.g., hyperon) polarization along the direction of vorticity
or the global orbital angular momentum in noncentral
heavy-ion collisions [18]. Note that �5 in Eq. (27) has
three quadratic terms in T, � and �5. Therefore, the LPE
should be present in both high and low energy heavy-ion
collisions with either low baryonic chemical potential and
high temperature or vice versa.
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