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We show that quantum circuits where the initial state and all the following quantum operations can be

represented by positive Wigner functions can be classically efficiently simulated. This is true both for

continuous-variable as well as discrete variable systems in odd prime dimensions, two cases which will be

treated on entirely the same footing. Noting the fact that Clifford and Gaussian operations preserve the

positivity of the Wigner function, our result generalizes the Gottesman-Knill theorem. Our algorithm

provides a way of sampling from the output distribution of a computation or a simulation, including the

efficient sampling from an approximate output distribution in the case of sampling imperfections for

initial states, gates, or measurements. In this sense, this work highlights the role of the positive Wigner

function as separating classically efficiently simulable systems from those that are potentially universal

for quantum computing and simulation, and it emphasizes the role of negativity of the Wigner function as

a computational resource.
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What renders a quantum computer a superior compu-
tational device? Where is the precise boundary between
classically efficiently simulable problems and ones for
which this is no longer possible? Despite a significant
research effort and partial progress [1–7], these questions
are still largely open. Quantum correlations surely play a
role in one way or the other in quantum computers and
simulators outperforming their classical counterpart. For
example, if the entanglement is—in a precise sense—too
low in a pure-state computation, one can classically effi-
ciently simulate the dynamics [2,3]. In measurement-based
computing specifically [8,9], where the resource character
of entanglement is particularly manifest, states can be too
little entangled [3], but also in a sense too entangled [4].
Possibly the most important result on classical simulability
of quantum computers is the Gottesman-Knill theorem,
stating that stabilizer circuits consisting of Clifford gates
only can be classically efficiently simulated [1,5,10].
Similarly, Gaussian operations for continuous-variable
systems can be efficiently simulated [13].

Here we present a generalization of the Gottesman-Knill
theorem stating that one can simulate, by efficient classical
sampling, quantum circuits starting from product states
with a positive Wigner function, followed by quantum
gates that have a positive Wigner function (in a sense
made precise below) and terminating with measurements
associated with positive Wigner functions. This result
holds true both for discrete variable systems where the
constituents have odd prime dimensions (easily general-
ized to arbitrary odd dimensions) as well as for continuous-
variable systems so common in quantum optics. In fact,
these two situations can be treated on exactly the same
footing—since at the root of the remarkably simple

argument, we exploit the structure of the phase spaces,
discrete as well as continuous. The relative elegance of the
approach draws from the observation that the expressions
for the discrete and continuous descriptions are identical.
The negativity of the Wigner function is often seen as

an indicator of ‘‘nonclassicality’’ [14–16] and this Letter
reinforce this interpretation by operationally identifying it
as a computational resource. Here we see that it is exactly
this negativity that is needed if a quantum computer or
simulator is to outperform its classical counterpart.
This result adds meat to the notion of such states being
‘‘classical,’’ quite similar to the situation of states with
positive Wigner functions and homodyne measurements
being unable to violate a Bell inequality [17] or to be useful
in magic state distillation [18].
Discrete and continuous phase spaces.—We start by

discussing the less commonly addressed phase space
structure of finite-dimensional quantum systems (compare
Refs. [19,20]), and shift the emphasis to infinite-
dimensional ones later. We assume the local dimension d
to be an odd prime, merely to avoid technicalities required
in nonprime dimensions (but they can be treated on the
same footing [20]). In this case the phase space of a single
d-level system is Zd � Zd, so that it can be associated with
a d� d cubic lattice. Given an orthonormal basis
fj0i; j1i; . . . ; jd� 1ig, we define the shift and boost opera-
tors as the generalizations of the familiar Pauli matrices by

xðqÞjxi ¼ jxþ qmoddi; zðpÞjxi ¼ !pxjxi; (1)

where ! ¼ e2�i=d is a dth root of unity, arithmetic being
modulo d, and x ¼ 0; . . . ; d� 1. The fundamental tools of
every quantum phase space representation are the so called
Weyl operators. For discrete systems they are given by
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wðq; pÞ ¼ !�2�1pqzðpÞxðqÞ; (2)

where 2�1 ¼ ðdþ 1Þ=2 is the multiplicative inverse of 2
(again modulo d). These operators form a group, the
Heisenberg-Weyl group, and are the main ingredient for
representing quantum systems in phase space.

Let us now turn to continuous systems and focus on a
single mode first, associated with canonical coordinates or
‘‘quadratures’’ of position Q and momentum P. The asso-
ciated phase space is now R2. Indeed, the continuous
version of the Weyl operator can be analogously given in
terms of the previous formulas [Eqs. (1) and (2)], with the
only difference being the use of standard arithmetic.
In fact, with a different choice of the phase factor, namely
! ¼ ei, the Weyl operator in Eq. (2) takes the form

wðq; pÞ ¼ expðiqP� ipXÞ;
which is the familiar displacement operator well known in
quantum optics. From now on we are going to use a unique
notation defined in such a way to be consistent with dis-
crete and continuous phase space representations. For this
reason, in Table I we introduce a set of symbols valid in
both settings.

The Wigner function of an operator O acting on n
discrete or continuous-variable systems is defined as

WOðrÞ ¼ ðc=2Þ�ntrðwðrÞ��nwðrÞyOÞ;
where wðrÞ ¼ wðq1; p1Þ � . . . � wðqn; pnÞ and � is the
single system parity operator: for discrete systems, on state
vectors, this parity operator acts as �: jxi � j � xmoddi
for continuous-variable systems as ð�c ÞðxÞ ¼ c ð�xÞ.
This function has the structure of W: Z2n

d ! R for discrete

systems and W: R2n ! R for continuous systems.
Properties of the Wigner function.—The Wigner func-

tion of a state � is normalized and can be interpreted as the
quantum analogue of a phase space distribution with the
peculiar property of being not necessarily positive in all its
domain. In the next sections we are going to use three
important properties:

trð�Þ ¼
I
r
W�ðrÞ ¼ 1; trðABÞ ¼ c2n

I
r
WAðrÞWBðrÞ;

WAT ðrÞ ¼WAð�rÞ; �¼ diagð1;�1; . . . ;1;�1Þ: (3)

By virtue of Hudson’s theorem, the only pure states
having a positive Wigner function are Gaussian states
[21] for continuous systems [22] and stabilizer states for
odd local dimension d [20]. Unitary operations preserving
the Gaussian form of the Wigner function are Clifford
operations in discrete systems and Gaussian operations in
continuous systems (for a discussion of how to implement
them experimentally, see Refs. [21,23]). Those operations
admit, via the Jamiolkowski isomorphism, a description in
terms of positive Gaussian Wigner functions.
For mixed states the situation is more complex. Surely,

convex combinations of Gaussian and stabilizer states will
have positive Wigner functions. But there also exist states
with a positive Wigner function which cannot be repre-
sented in this form [20,24]. Analogously there are quantum
operations admitting a positive Wigner representation
but which are not a convex combination of Clifford or
Gaussian unitary operations. In this Letter we will focus
on the simulation of quantum algorithms involving states,
operations, and measurements all described by positive
Wigner functions. This is a more general scenario of which
the Gaussian setting is a particular case. In this sense our
result can be viewed as an extension of the Gottesman-
Knill theorem. Remarkably, our method is completely
independent from any Gaussianity property.
Operations having positive Wigner functions.—We now

define the Choi matrix f of a completely positive map F as

f ¼ ð1 � FÞj!ih!j
where j!i ¼ ðPd

j¼1 jj; jiÞ�n for discrete systems, which is

up to normalization the state vector of the maximally
entangled state. For continuous systems, if the limit exists
and is of trace class, we set f ¼ lims!1ð1 � FÞj!sih!sj,
where j!si ¼ ðP1

j¼1 s
jjj; jiÞ�n. The Choi matrix is posi-

tive, as a consequence of F being completely positive, and
it is supported on a Hilbert space having the natural struc-
ture of H ¼ H in �H out. We denote the partially trans-
posed matrix with respect to subsystem ‘‘out’’ with the
symbol f�. We will say that the completely positive map F
‘‘has a positiveWigner function’’ if the Choi matrix f has a
positive Wigner functionWf. It is easy to see that if f has a

positive Wigner function, then the same is true for f� as
well. The application of an operation to a state �out ¼
Fð�inÞ is related to the Choi matrix via a partial trans-
position � and a partial trace �out ¼ trinðð�in � 1Þf�Þ.
In phase space this is reflected by

WðroutÞ ¼ c2n
I
rin
Wf�ðrout; rinÞWðrinÞ; (4)

where rin, rout 2 Z2n
d . Trace-preserving operations satisfy

troutðfÞ ¼ 1; c2n
I
rout

Wf�ðrout; rinÞ ¼ 1; (5)

for all rin. This means that, if the function is positive,
c2nWf� can be interpreted as a classical stochastic matrix.

TABLE I. Table of symbols providing a unified notation valid
for both discrete and continuous-variable systems. The function
size (r) gives the number of constituents of r.

Symbol Discrete Continuous

! e2�i=d ei

wðq; pÞ !�2�1pqzðpÞxðqÞ expðiqP� ipXÞ
r ðq1; p1; . . . ; qn; pnÞ 2 Z2n

d ðq1; p1; . . . ; qn; pnÞ 2 R2nH
r

P
r2ZsizeðrÞ

d

R
r2RsizeðrÞ drsizeðrÞ

c 2d 2�
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This will be a key property for the classical sampling algo-
rithm. For discrete systems, the Wigner function associated
with the identity operation is given by the Kronecker delta
Wj!ih!j� ¼ c�2n�ðrout; rinÞ. For continuous systems, one

can also consider Wigner functions associated with opera-
tions for which the Choi matrix is not of trace class, such as
when F is the identity operation. In this case, we have in
the sense of distributions Wj!sih!sj� ! c�2n�ðrout; rinÞ.

An important subcase of operations having positive
Wigner functions is constituted by Clifford and Gaussian
unitaries US;v. They map Weyl operators onto Weyl opera-

tors under conjugation, so that US;vwðrÞUy
S;v ¼ wðSrþ vÞ

is again a valid Weyl operator. Here, S 2 Spð2n;ZdÞ and
v 2 Z2n

d for discrete systems while S 2 Spð2n;RÞ and

v 2 R2n for continuous systems. One can deduce that the
associated Choi matrix has the following Wigner func-
tion representation for discrete systems [20] Wf�

S;d
¼

c�2n�ðSrout þ v; rinÞ, and similarly for continuous systems
in the sense of distributions. Physically, Clifford and
Gaussian operations are of utmost importance in the labo-
ratory since they can often be realized with simple experi-
mental settings.

Measurements with positive Wigner functions.—We
finally have to give a phase space description of a general
measurement acting on single subsystems. Given a general
measurement defined by a set of positive operator valued
measures (POVM) fMkg satisfying P

K
k¼1 Mk ¼ 1, we as-

sociate to each operatorMk the respective Wigner function
WMk

: Z2
d ! R for discrete systems and WMk

: R2 ! R
for continuous systems. Given a state �, the probability
of getting the measurement outcome k on subsystem l
will be

PðkÞ ¼ trð�MðlÞ
k Þ ¼ c2

I
r
W�ðrÞWMk

ðrlÞ: (6)

Moreover, for all values of rl we have

c2
XK
k¼1

WMk
ðrlÞ ¼ 1; (7)

which means that, if the functions c2WMk
are positive, then

they can be interpreted as probabilities in the variable k.
Statement of the problem.—Having laid out our forma-

lism, we are now in the position to precisely state the
problem at hand: we allow for general quantum circuits
of the following form, again in both continuous and dis-
crete settings.

(1) We consider initial product states � ¼ �1 � . . . � �n.
(2) Then, a sequence of trace preserving quantum chan-

nels Ft � . . .F2 � F1 is applied (not necessarily unitary),
each of them supported on at most m subsystems at a time.

(3) Finally, local measurements are performed on each
individual subsystem defined by some local projective
positive operator valued measures fMkg.

Here n. denotes the number of constituents, while t is the
depth of the circuit, so the number of gates or local
operations applied. The classical simulation should scale
polynomially with respect to these two parameters. We
remark that initial states can be mixed and the applied
gates will in general be nonunitary. This is probably the
most general model of a nonadaptive quantum algorithm,
i.e., where the sequence of gates and measurements is
fixed. Nonadaptivity has been chosen just for simplicity
of the exposition but the algorithm can be easily extended
to the adaptive case.
A run of the quantum algorithm will provide one list of

outcomes k1; k2; . . . ; kn, one for each measured subsystem.
The probability of a given list of outcomes to occur is

Pðk1; . . . ;knÞ¼ trððMk1 �Mk2 . . .MknÞðFt� . . .�F2�F1Þð�ÞÞ:
(8)

Using quantum systems, one can hence sample from the
distribution P. Classically, the problem to be solved is
again a sampling problem: the quantum circuit can be
classically simulated if there is a classical algorithm that
is efficient in t and n and provides, in each run, a list of
outcomes k1; . . . ; kn drawn from (approximately) the same
probabilities of the quantum circuit given in Eq. (8). Note
that we do not require to really compute the probabilities of
all the possible outcomes (simulation in a stronger sense),
but we just want a classical algorithm to be efficient in
sampling from the distribution defined by the quantum
circuit, in the sense that output strings of the classical
and quantum machines are drawn from the same (or ap-
proximately the same) probability distribution. This
weaker sense of simulation is enough to exclude any
possible speedup of the quantum algorithm with respect
to the classical one, and hence identifies negativity of the
Wigner function as a necessary resource in quantum
computing.
Phase space representation.—First note that the Wigner

function of the input product state � ¼ �1 � . . . � �n is
given by a product function W� with

W�ðrÞ ¼ W�1
ðr1ÞW�2

ðr2Þ . . .W�n
ðrnÞ;

whereW�l
is associated with the subsystem�l. To each gate

Ft can be associated the Wigner functionWf�t
. The Wigner

functions of the POVM associated with the outcome k and
performed on subsystem l are denoted as WMk

with local

phase space coordinates rl. By sequentially applying
Eq. (3), we can express the outcome probabilities as

Pðk1; . . . ;knÞ¼c2nðtþ1ÞI
rðtÞ;rðt�1Þ...rð0Þ

WMk1
ðrðtÞ1 Þ . . .WMkn

ðrðtÞn Þ

�Wf�t
ðrðtÞ;rðt�1ÞÞ . . .Wf�

1
ðrð1Þ;rð0ÞÞ

�W�ðrð0ÞÞ; (9)
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where the subscripts in the coordinates indicate subsystems
while superscripts indicate the integer time steps associated
with the sequential application of the gates. This is just a
formal phase space description of the quantum circuit
completely equivalent to the operator representation given
in Eq. (8).

Efficient classical simulation.—We now make the fol-
lowing two assumptions: (i) The Wigner functions of the
input state, the gates, and the POVMs are positive; (ii) it is
possible to draw phase space points according to local
probability distributions associated with local states, local
gates, and local measurements. Later, the second of these
assumptions will be relaxed allowing for eventual classical
sampling errors.

Observation (Efficient classical simulation of circuits).—
For any n and t one can sample classically from the
distribution P in poly (n, t) time.

(1) Step 0: Draw a phase space point �rð0Þ according to the
input Wigner function W�ð:Þ.

(2) Steps j ¼ 1; . . . ; t: draw a phase space point �rðjÞ

according to the distribution c2nWf�j
ð:; �rðj�1ÞÞ.

(3) Step tþ 1: Finally, draw a measurement outcome
k1; k2; . . . ; kn according to the probability distribution

Pðk1; . . . ; knÞ ¼ c2nWMk1
ð�rðtÞ1 Þ . . .WMkn

ð�rðtÞn Þ:

Proof:This algorithm is simply a classical stochastic pro-
cess and directly from the law of conditional probabilities
we have that, in the final step tþ 1, the probability of
getting the outcome k1; k2; . . . ; kn is given by Eq. (9). A run
of the classical algorithm is completely equivalent to one
run of the quantum circuit. The efficiency of the classical
procedure with respect to n and t follows from the follow-
ing observations:

(1) Step 0 is efficient because, since the initial state is a
product, we merely have to draw n independent subsystem
phase space vectors.

(2) Steps 1; 2; . . . ; t are efficient because, for each gate
in step j, we draw a phase space vector associated with at
most m local subsystems and leave the complementary
coordinates invariant. This follows from the structure of
Wf�j

factorizing as (as a Kronecker delta or in the sense of

distributions)

c2nWf�j
ðrj; rj�1Þ ¼ c2mWðlocalÞ

f�j
ðrjL; rj�1

L Þ�ðrjC; rj�1
C Þ;

where rL are the local coordinates (rC are the complemen-
tary ones) of the m subsystems involved in the gate. For

every input vector rj�1 one has to draw a vector rjL with

respect to the local distribution c2mWðlocalÞ
f�j

and just leave

the other coordinates invariant rj�1
C � rjC.

(4) Step tþ 1 is efficient because, since the final mea-
surements are local, we draw n independent outcomes
associated to each subsystem. j

We observe that the positivity of all the Wigner func-
tions and the properties given in Eqs. (3), (5), and (7), are
crucial for all the functions appearing in the classical
algorithm to be interpreted as probability distributions.
In particular at each step j ¼ 1; . . . ; t we make use of the
fact that c2nWf�j

ð:; :Þ can be viewed as a stochastic matrix.

Moreover, using conditional probabilities, the algorithm
can easily accommodate adaptive later steps based on
earlier measurement outcomes.
Robustness to sampling errors.—In this section we dis-

cuss the robustness of the previous method with respect to
possible errors in the classical sampling from positive
Wigner functions. Suppose that in the classical algorithm
one is able to efficiently sample phase space vectors only
from imperfect probability distributions, here marked
with a prime. For simplicity of notation, we denote the

stochastic matrix associated with the kth step by QðkÞ ¼
c2nWf�

k
ð:; :Þ and its (stochastic) approximation by Q0ðkÞ.

k:k1, k:k1 denote the usual respective matrix p norms.
Observation 2 (Efficient approximation of circuits).—

For any n, t, and any " > 0, consider a sampling from
the distribution P0 obtained from initial states, operations,
and measurements deviating from those in Observation 1
in that

jW�l
ðrlÞ �W�0

l
ðrlÞj< "; jWMkl

ðrlÞ �WM0
kl

ðrlÞj< ";

for l ¼ 1; . . . ; n and all rl, and kQðkÞ �Q0ðkÞk1 < " for k ¼
1; . . . ; t. Then one can sample from P0 with kP� P0k1 < "
poly (n, t) in poly (n, t) time.
Note that the above estimates are also valid if one has

trace-norm bounds for all states as well as operator norm
bounds for the POVM elements. The proof can be found in
the Supplemental Material [25].
Summary and outlook.—In this work, we have shown

that the negativity of the Wigner function can be grasped as
a resource in quantum computing and simulation: if the
basic elements of a circuit exhibit a positive Wigner func-
tion, the probability distribution of the quantum compu-
tation can be efficiently sampled. This remains true if one
can only approximately implement each gate, in that the
errors scale favorably. Our result generalizes the Gottesman-
Knill theorem for sampling outcomes of circuits, in a way
where continuous and discrete systems are treated on
exactly the same footing. We hope that the present approach
stimulates further work on identifying the boundary
between classically efficiently simulable quantum systems
and those universal for quantum computing.
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