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Blind quantum computation is a secure delegated quantum computing protocol where Alice, who does

not have sufficient quantum technology at her disposal, delegates her computation to Bob, who has a fully

fledged quantum computer, in such a way that Bob cannot learn anything about Alice’s input, output, and

algorithm. Protocols of blind quantum computation have been proposed for several qudit measurement-

based computation models, such as the graph state model, the Affleck-Kennedy-Lieb-Tasaki model, and

the Raussendorf-Harrington-Goyal topological model. Here, we consider blind quantum computation for

the continuous-variable measurement-based model. We show that blind quantum computation is possible

for the infinite squeezing case. We also show that the finite squeezing causes no additional problem in the

blind setup apart from the one inherent to the continuous-variable measurement-based quantum

computation.
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Introduction.—When a scalable quantum computer is
realized, it will be used in the ‘‘cloud’’ style since only a
limited number of people will be able to possess quantum
computers. Blind quantum computation [1–11] provides a
solution to the issue of the client’s security in such a cloud
quantum computation. Blind quantum computation is a
new secure protocol which enables Alice, who does not
have enough quantum technology, to delegate her compu-
tation to Bob, who has a fully fledged quantum computer,
in such a way that Bob cannot learn anything about Alice’s
input, output, and algorithm. A protocol of the uncondi-
tionally secure universal blind quantum computation was
first proposed in Ref. [3] by using the measurement-based
quantum computation (MBQC) on the cluster state [12–14]
and later generalized to other resource states such as
the Affleck-Kennedy-Lieb-Tasaki state [5,15,16] and the
three-dimensional Raussendorf-Harrington-Goyal state
[17–21], which enables topological fault tolerance [8,9].
A proof-of-principle experiment of blind computation was
realized by using the discrete degrees of freedom of
photons [7].

In this paper, we consider the continuous variable (CV)
version of the blind quantum computation. The CV cluster
MBQC was proposed in Refs. [22,23]. There, jþi �
1ffiffi
2

p ðj0i þ j1iÞ state of a single qubit is replaced with the

zero momentum state j0ip of a single mode (qumode), and

the two-mode gate eiq�q plays the role of the qubit
CONTROLLED-Z gate, j0ih0j�Iþj1ih1j�Z. Experimental

demonstrations of the building blocks of the CV cluster
MBQCwere already achieved [24–28]. We show that blind
quantum computation is possible in the infinite squeezing
case. We also consider the finite squeezing case and show
that it causes no problem apart from the additional errors,
which come from the redundancy of gates required for the
blindness. Since even the nonblind CV MBQC has to cope
with these errors for its scalability, we conclude that the

finite squeezing does not cause any fundamental problem
in principle.
CV cluster MBQC.—Let us briefly review the CV cluster

MBQC proposed in Refs. [22,23]. We define the Weyl-
Heisenberg operators XðsÞ � exp½�isp� and ZðsÞ �
exp½isq� with s 2 R, where q and p are the quadrature
operators. TheseWeyl-Heisenberg operators are CVanalog
of the qubit Pauli operators. The Fourier transform opera-
tor F is defined by F�exp½iðq2þp2Þ�4� with Fjsiq ¼ jsip.
This operator is the CV analog of the qubit Hadamard
operator. The CV version of the CONTROLLED-Z gate and
the CONTROLLED-X gate are defined by CZ � expðiq � qÞ
and CX � expð�iq � pÞ, respectively. The elementary
block of the CV cluster MBQC is the teleportation gate

(Fig. 1). Here, Df
q � exp½ifðqÞ�, and f is a polynomial

of q. Note that Df
q and Df

p are obtained from FDf
q

since ðFD0
qÞ3FDf

q ¼ Df
q and ðFD0

qÞ2ðFDf�qÞðFD0
qÞ ¼ Df

p.

Furthermore, eisq
k=k (k ¼ 1, 2, 3) and eisp

k=k (k ¼ 1, 2, 3)

are single-mode universal [29]. Hence, RqðvÞ �
F exp½iðaqþ b q2

2 þ c q3

3 Þ� is single-mode universal, where

v ¼ ða; b; cÞ. The addition of CZ enables all multimode
universality. Let us explain how to compensate the
by-product error XðmÞ in Fig. 1. Note that RqðvÞXðmÞ ¼
ZðmÞRqþmðvÞ ¼ ZðmÞRqðMmvÞ, where

Mm ¼
1 m m2

0 1 2m

0 0 1

0
BB@

1
CCA:

FIG. 1 (color online). The CV teleportation gate.
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Therefore, if wewant to implementRqðvÞ and if there is the
by-productXðmÞ, we have only to implementRqðM�1

m vÞ. In
short, Fig. 2(a) is universal if the feed forwarding is appro-
priately done. Finally, let us notice that the zero-momentum
state j0ip is not realistic, and normally j0ip is approxi-

mated by the finitely squeezed vacuum state j0;�ip ¼
ð��2Þ�1=4

R
dpe�ðp2=2�2Þjpip. This finite squeezing

causes errors in the CV cluster MBQC [22,23].
Blind quantum computation.—In the blind quantum

computation [3], Alice, the client, has a quantum device
which emits randomly rotated single qubit states and a
classical computer. Bob, the server, has full quantum
power. Let us assume that Alice wants to perform the
cluster MBQC on the N-qubit graph state jGi with mea-
surement angles f�jgNj¼1. If Alice sends Bob f�jgNj¼1, and

Bob creates jGi, the delegated quantum computation is of
course possible. However, obviously in this case Bob can
learn Alice’s computation. Hence, they run the following
protocol [3]: (1) Alice sends Bob N randomly rotated

single-qubit states fjþ�jigNj¼1, where jþ�i � e�iZ�=2jþi
and �j 2 fk�4 jk ¼ 0; 1; . . . ; 7g is a random angle, which

is hidden from Bob. (2) Bob applies CZ gates among
them according to the graph structure. Since CZ

commutes with e�iZ�=2, Bob obtains ðNe2E CZeÞ�
ðNN

j¼1 e
�iZj�j=2Þjþi�N ¼ ðNN

j¼1 e
�iZj�j=2ÞjGi, where E is

the set of edges of G, and the subscript j of Zj means the

operator acts on jth qubit. (3) For j ¼ 1 to N, they repeat
the following: Alice sends Bob �j � �j þ�0

j þ rj�,

where �0
j is the modification of �j which includes

appropriate feed forwardings (by-product corrections)
and rj 2 f0; 1g is a random binary, which is hidden from

Bob. Next, Bob measures jth qubit in the fj��j
ig basis and

returns the measurement result to Alice.

It was shown inRef. [3] that this protocol is correct. Here,
correct means that if Bob is honest then Alice obtains the
correct outcome. It was also shown that the protocol is blind
[3]. Here, blind means that whatever Bob does, Bob cannot
learn anything about Alice’s input, output, and algorithm.
In order to guarantee Alice’s privacy, the geometry of

graph G must be a secret to Bob. There are three ways of
doing it. The first technique is to use the brickwork state
[3]: a certain two-dimensional graph state, which is
universal with only fj��ig basis measurements for � 2
fk�4 jk ¼ 0; 1; . . . ; 7g. Since the geometry of the brickwork

state is fixed, Bob cannot learn about Alice’s algorithm.
The second technique is to implant a ‘‘hair’’ to each qubit
of the regular-lattice graph state [8] as shown in Fig. 3(a).
We can simulate Z measurement and any X-Y plane mea-
surement on any blue qubit with only X-Y plane measure-
ments on yellow and blue qubits [8]. Hence, we can ‘‘carve
out’’ a specific graph structure from the square lattice of
blue qubits, as shown on the right side of Fig. 3(a). The
third technique is the ‘‘graph hiding technique’’ [9]. By
using this technique, Alice can have Bob prepare any graph
state in such a way that Bob cannot learn the geometry of
the graph. This technique is based on the simple idea that
CZ does not create entanglement if one of the qubits is j0i
or j1i: CZðjc i � j0iÞ ¼ jc i � j0i and CZðjc i � j1iÞ ¼
Zjc i � j1i. Therefore, if Alice hides several qubits in j0i
or j1i into the set of qubits she initially sends to Bob, she
can let Bob create her desired graph state. Since Bob
cannot distinguish j0i, j1i, and eight jþ�i states, Bob
cannot know when he entangles qubits [Fig. 3(b)].
CV blind protocol.—Now let us explain our CV blind

protocol. Our protocol runs as follows: (1) Alice sends Bob
N qumode states fSqð��jÞj0ipgNj¼1, where �j ¼ ðaj; bj; cjÞ
is randomly chosen from R3 and SqðvÞ ¼ FyRqðvÞ.
(2) Bob applies CV CZ gates according to the graph
structure. (3) Alice might choose the brickwork, the hair
implantation technique, or the graph hiding technique.
Regardless of her choice, we can assume without loss
of generality that Bob has the ‘‘encrypted’’ CV graph

state ½NN
j¼1 X

jð�jÞZjð�jÞSjqð��jÞ�jGi, where jGi is the

FIG. 2 (color online). (a): The circuit representation of the CV
MBQC, where Sqð�Þ ¼ FyRqð�Þ. (b): The blind version of (a).

Since Sq’s commute with CZ’s (b) is equivalent to (a).

FIG. 3 (color online). (a) The hair implantation technique [8].
Left: A two-qubit graph state (hair) indicated by yellow (small
circle) is attached to each blue qubit (large circle) of the square
graph state. Right: A desired graph state can be carved out from
the blue square graph. Bob cannot know this graph structure.
(b) The graph hiding technique [9]. Yellow qubits (some qubits)
are jþ�i, whereas red qubits (other qubits) are j0i or j1i. Bob
applies CZ gates on all edges (the left) but actually obtains the
right graph state, and he does not know its geometry.
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N-qumode CV graph state, and the subscript j of Xj means
it acts on the jth qumode. (3) For j ¼ 1 to N, Alice and
Bob repeat the following: let �j � ð�j; �j; 	jÞ be Alice’s
computational parameters (her algorithm), and let
�0

j � ð�0
j; �

0
j; 	

0
jÞ include feed forwardings. Alice sends

Bob �j ¼ M�1
�j

wj, where wj ¼ ð�0
j þ aj � �j þ rj; �

0
j þ

bj; 	
0
j þ cjÞ and rj 2 R is a random real number. Next,

Bob applies Sqð�jÞ on jth qumode and does the p mea-

surement. (Or, he directly measures Syq ð�jÞpSqð�jÞ of the
jth qumode.) He sends the measurement result to Alice.

Correctness.—Let us show the correctness of our proto-
col. See Fig. 2(b), which is the circuit representation of

our protocol. Since Sq commutes with CZ, Fig. 2(b) is

equivalent to Fig. 2(a). Note that the equivalence between

(a) and (b) in Fig. 2 is based on only the commutativity

between Sq and CZ; therefore, it holds even if we replace

each input j0ipwith its finitely squeezed version.Hence, the
finite squeezing does not cause any additional effect here.
More precisely, note that the following is true for any

state jc i:

phpjSjqð�jÞXjð�jÞZjð�jÞSjqð��jÞjc i ¼ phpjXjð�jÞZjð�jÞSjqðM�j
M�1

�j
wjÞSjqð��jÞjc i

¼ phpjXjð�jÞZjð�jÞSjqðwjÞSjqð��jÞjc i

¼ phpj exp
�
i

�
ð�0

j þ aj � �j þ rjÞqþ ð�0
j þ bjÞq

2

2
þ ð	0

j þ cjÞ q
3

3

þ �jq� ajq� bj
q2

2
� cj

q3

3

��
jc i

¼ phpj exp½irjq� exp
�
i

�
�0
jqþ �0

j

q2

2
þ 	0

j

q3

3

��
jc i

¼ phpj exp½irjq�Sjqð�0
jÞjc i

¼ php� rjjSjqð�0
jÞjc i:

Hence, Bob effectively does the correct MBQC except for
the fact that if the measurement result is p, the by-product,
which comes from this measurement, is not XðpÞ but
Xðp� rjÞ; the by-product can be compensated by chang-
ing the following measurement parameter: since the above
equation is true for any state jc i, the situation does not
change even if the squeezing is finite.

The brickwork implementation for the CV blind proto-
col is shown in Fig. 4. SinceCZ� CZ � I for the CV case,
we cannot directly generalize the qubit brickwork state of
Ref. [3] to the CV case. In particular, we need CZ and CZy
as is shown in the figure. The hair implantation technique
also works if we implant four-qumode hair on each

qumode, since the measurement of q on a qumode in a
CV graph state removes that qumode [23], and a q mea-

surement can be simulated only with SyqpSq measurements

by using the following relations: F� Feiq
2=2 � Feiq

2=2 �
F ¼ eiq

2=2eip
2=2 and e�ip2=2e�iq2=2peiq

2=2eip
2=2 ¼ q. The

graph hiding technique for qubits can also be generalized
to CV, since

CZðjc i � jsipÞ ¼ ðI � ZðsÞÞCZðjc i � j0ipÞ;
CZðjc i � jsiqÞ ¼ ðZðsÞjc iÞ � jsiq:

(1)

Therefore, Alice can have Bob create a graph state in such
a way that Bob cannot know the graph geometry.
Finally, let us consider the effect of the finite squeezing.

Aswehave seen, the equivalence between Figs. 2(a) and 2(b)
is valid for any initial state (Fig. 2); therefore, the finite
squeezing does not cause any additional problem apart
from the original one inherent to the nonblind CV MBQC
[22,23]. If Alice and Bob choose the brickwork implemen-
tation or the hair implantation technique, the finite squeezing
does not cause any additional effect since the brickwork
blind quantum computation and the hair implantation tech-
nique are nothing but a normal cluster MBQC with some
redundant gates. (Of course, this redundancy accelerates the
accumulation of errors, and, therefore, requires more fault
tolerance, but such a problem is not a specific problem to the
blind CV MBQC. Even the nonblind one ultimately needs

FIG. 4 (color online). (a) The implementation of SqðvÞ � I.
Blue (left) two-qubit gate is CZ. Red (right) two-qubit gate is
CZy. (b) The implementation of SpðvÞ � I. The blue (empty)

box means R�qðM�1
m vÞ. (c) The implementation of CX. The

blue boxes are Feiq
2=2 up to by-product corrections. The purple

(right empty) box is Fe�iq2=2 up to by-product corrections.
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enough fault tolerance for the scalability [22,23,26,30].)
Finally, regarding the graph hiding technique, once the graph
state is created, it is a usual CV MBQC with errors. If the
squeezing is finite, Eq. (1) becomes not an exact but approxi-
mate one. This causes additional errors on the created graph
state, but such errors are that even the nonblind CV MBQC
can experience.

Blindness.—In our protocol, Bob obtains quantum states
fSqð��jÞj0ipgNj¼1 and classical messages f�jgNj¼1. Note

that �j ¼ M�j
�j ��0

j þ �je� rje � kj � rje, where

e ¼ ð1; 0; 0Þ. Hence, Bob’s state is
Z

dr
ON
j¼1

Sqð��jÞj0ipph0jSyq ð��jÞ

¼
Z

dr
ON
j¼1

Sqð�kjÞjrjipphrjjSyq ð�kjÞ ¼ I�N;

which means that Bob’s state is independent of f�jgNj¼1.

Note that the blindness also holds in the finite squeezed
case, since

Z
dr

ON
j¼1

Sqð��jÞj0;�jipph0;�jjSyq ð��jÞ

¼
Z

dr
ON
j¼1

T�j
½Sqð�kjÞeirjqj0ipp

� h0je�irjqSyq ð�kjÞ�Ty
�j
;

where T� � ð��2Þ�1=4
R
dte�ðt2=2�2Þeiqt.

Discussion.—In optical systems, the implementation of

eiq
3=3 is much harder than those of eiq and eiq

2=2. Hence it
would be desirable for Alice to avoid the implementation

of eiq
3=3 by herself. There are two solutions. One solution is

for Bob to embed many eisq
3=3j0ip with various s into his

resource state. If Alice uses the hair implantation technique
or the graph hiding technique, Bob cannot know which

eisq
3=3j0ip contributes to the computation. The other solu-

tion is to use the relation

QyðtÞei	q3=3QðtÞ ¼ ei	
0q3=3; (2)

where QðtÞ � e�i lnðtÞðqpþpqÞ=2 is the squeezing and

t ¼ ð	0=	Þ1=3. Since the squeezing can be done blindly,

Alice can have Bob implement ei	
0q3=3 without allowing

Bob to learn 	0.
If the state measurement is relatively easy, we can

consider another blind quantum computation protocol,
where Bob creates the resource state and Alice does the
measurement [10]. One advantage of this protocol is that
the security is guaranteed by the no-signaling principle
[31], which is more fundamental than quantum physics,
and Alice does not need to verify her measurement
device (the device independence [32]). The CV cluster
MBQC is suitable for such a measuring Alice protocol,

since the measurements of e�isqpeisq ¼ pþ s and

e�isq2=2peisq
2=2 ¼ pþ sq are easily done with the homo-

dyne detection. The gate eisq
3=3 can be implemented

blindly by using Eq. (2).
If we use the temporal degrees of freedom, only a single

CZmachine is sufficient [33]. As shown in Fig. 5, it is easy
to see that blind versions of such a temporal encoding
implementation are possible whether Alice prepares states
[Fig. 5(a)] or does the measurements [Fig. 5(b)].
The author acknowledges JSPS for support.
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