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The number of four-body states known to behave universally is small. This work adds a new class of

four-body states to this relatively short list. We predict the existence of a universal four-body bound state

for heavy-light mixtures consisting of three identical heavy fermions and a fourth distinguishable lighter

particle with a mass ratio � * 9:5 and short-range interspecies interaction characterized by a positive

s-wave scattering length. The structural properties of these universal states are discussed, and finite-range

effects are analyzed. The bound states can be experimentally realized and probed by utilizing ultracold

atom mixtures.
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Universality plays an important role in nearly all areas of
physics and allows one to connect phenomena governed by
vastly different energy and length scales. A simple class of
universal states consists of two-body bound states whose
size is much larger than any other length scale in the prob-
lem. Prominent examples include diatomic Feshbach mole-
cules [1], which are nowadays created routinely in cold atom
laboratories around the world, and dimesons such as the
charmonium resonance near 3870 MeV [2]. The former
have a binding energy of the order of 10�10 eV, while the
latter have a binding energy of the order of 0:5� 106 eV.
Yet, once expressed in terms of the two-body s-wave scat-
tering length as, the binding energy can be written, to a very
good approximation, as EZR

2 � �@
2=ð2�a2sÞ in both cases;

here, � is the reduced mass of the constituents.
Although the concept of universality has been extended

successfully to three- and higher-body systems [3–22], the
list of examples, particularly for few-body systems con-
sisting of more than n ¼ 3 constituents, is still compara-
tively small. Most notably, three- and four-body physics
has been investigated in the context of Efimov physics. The
three-body Efimov effect [5], i.e., the existence of infinitely
many geometrically spaced three-body bound states, can
occur when the s-wave scattering length is much larger
than the range of the two-body potential. This at first sight
purely academic scenario can be realized in cold atom
experiments by tuning the s-wave scattering length in the
vicinity of a Fano-Feshbach resonance through application
of an external magnetic or optical field [1,12]. In the four-
body sector, Efimov physics can occur via two different
routes: as a true four-body Efimov effect [22] or as four-
body states universally tied to three-body Efimov states
[6,8,9]. In either case, the description of the Efimov sce-
nario requires two parameters: the s-wave scattering length
and a higher-body parameter [5].

This Letter reports on a new class of universal four-body
states, predicted to exist—just as Efimov states—in three

spatial dimensions that are fully determined by the two-body
s-wave scattering length as. As such, they are fundamen-
tally different from Efimov states, which depend on two
parameters. The universal four-body bound states exist in
heavy-light mixtures that consist of three identical heavy
fermions and a fourth distinguishable particle, which inter-
acts with the heavy particles through a short-range two-body
potential with a positive s-wave scattering length as. We find
that the four-body bound states exist for mass ratios � larger
than �c;4 � 9:5. For effectively two- or one-dimensional

confinement, the universal tetramers are expected to be
more strongly bound than in three spatial dimensions. In
fact, universal tetramers under quasi-two-dimensional con-
finement havevery recently been predicted to exist for� * 5
[21]. Just as the three-body bound states for positive as are
connected to Efimov states (which exist, in the zero-range
limit, for � > 13:607) [17–20,23,24], the universal four-
body states predicted here are expected to be connected to
four-body Efimov states, which have been predicted to exist
for 13:384< �< 13:607 [22]. The different classes of states
can be described in a unified framework within the hyper-
spherical coordinate or effective field theory formulations.
We analyze the dependence of the binding energy on the
range of the underlying two-body interaction potential and
interpret our findings employing hyperspherical coordinates.
The universal four-body bound states discussed here not only
are interesting from the few-body point of view but also
have important implications for the many-body phase dia-
gram of heavy-light mixtures [25–28] that can be realized
with cold atoms [29–32], electrons [33], and quarks.
Our starting point is the nonrelativistic HamiltonianH in

free space for n� 1 identical heavy fermions of mass M
and a single distinguishable light particle of mass m:

H ¼ Xn�1

j¼1

�@
2

2M
r2

~rj
þ�@

2

2m
r2

~rn
þ Xn�1

j¼1

VtbðrjnÞ; (1)
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where VtbðrjnÞ ¼ �V0 exp½�r2jn=ð2r20Þ�. Here, ~rj denotes

the position vector of the jth particle and rjk the interparticle

distance, rjk ¼ j~rj � ~rkj. The interaction between the

heavy and light particles is described by the Gaussian
potential Vtb with depth V0 and range r0. We are interested
in the regime where the two-body free-space s-wave scat-
tering length as is positive and r0 � as. Throughout, we
express lengths in units of as and energies in units of jEZR

2 j,
where EZR

2 denotes the relative s-wave energy of the two-

body system with zero-range interactions (realized when
r0 ! 0), EZR

2 ¼�@
2=ð2�a2sÞ with �¼Mm=ðMþmÞ. For a

given r0=as, we adjust the depth V0 such that the two-body
potential supports a single s-wave bound state.

To determine the eigenstates and eigenenergies ofH, we
expand the relative wave function in terms of explicitly
correlated Gaussians [34]. To construct basis functions
with good total relative angular momentum L, projection
quantum number ML (ML ¼ 0), and parity �, we employ
the global vector approach [35,36]. The parameters of
the explicitly correlated Gaussian basis functions are opti-
mized semistochastically. According to the generalized
Ritz variational principle [34], the approach yields varia-
tional upper bounds for the eigenenergies of the ground
and excited states.

We first consider the n ¼ 3 system with L� ¼ 1� sym-
metry. Employing zero-range s-wave interactions, a univer-
sal trimer state has been predicted to exist for �c;3 * 8:173
[20]. A second universal trimer state has been predicted to
be supported for ��

c;3 * 12:917 [20]. Symbols in Fig. 1

show the relative energy E3 of the energetically lowest-lying
three-body state with 1� symmetry, calculated by the sto-
chastic variational approach and scaled by jEZR

2 j, as a

function of r0=as for various mass ratios � (� ¼ M=m).
The trimer energy becomes more negative with increasing �
for a fixed r0=as. Moreover, the trimer energies approach
the zero-range limit from below, with the range dependence

becoming larger with increasing �. For comparison, the
dashed line shows the quantity E2=jEZR

2 j; here, E2 denotes

the relative two-body energy. Because of the scaling chosen,
the dimer energy is independent of the mass ratio. The
dependence of the dimer energy on r0 is smaller than that
of the trimer energy. Dotted lines in Fig. 1 show three-
parameter fits to the three-body energies with r0=as �
0:01 [37]. The symbols in the inset in Fig. 1 show the
extrapolated zero-range energies EZR

3 , scaled by jEZR
2 j, as a

function of the mass ratio �. The solid line shows a fit of
the quantity EZR

3 =jEZR
2 j to a fourth-order polynomial. Our

fit predicts that the trimer becomes unbound with respect to
the dimer for �c;3 � 8:20, which compares favorably with

the �c;3 value of 8.173 determined for zero-range interac-

tions [20]. This good agreement demonstrates that the
stochastic variational approach employed in this work is
capable of accurately describing universal few-body bound
states. Nonuniversal trimer states can, at least in principle,
exist for � * 8:6, corresponding to a scaled hyperangular
eigenvalue s0;unit < 1 [17,27,38,39]. Whether or not non-

universal states exist depends on the details of the under-
lying two-body potential. For the Gaussian model potential
considered here, it was shown [40,41] that nonuniversal
three-body physics comes into play for mass ratios larger
than those considered here.
We now discuss the energetics of the four-body system.

For zero-range interactions with 1=as ¼ 0, the s0;unit value
is greater than 1 for � < 10 [40–42], suggesting that
four-body bound states are, provided they exist, universal.
Circles and triangles in Fig. 2 show the quantity E4=jEZR

2 j
for, respectively, the energetically lowest-lying and second-
lowest-lying stateswithL� ¼ 1þ symmetry for (a)� ¼ 9:5,
(b) � ¼ 9:75, and (c) � ¼ 10 as a function of r0=as. The
four-body energies are obtained by the stochastic variational
approach. For comparison, the dashed lines inFig. 2 show the
quantity E2=jEZR

2 j, and the crosses and solid lines show the

quantity E3=jEZR
2 j. The four-body ground state energy lies

below the three-body energy for small r0=as. For � ¼ 9:5,
9.75, and 10, the four-body ground state energy ‘‘dives
down’’ around r0=as � 0:015, 0.011, and 0.008, respec-
tively. In this regime, the four-body state acquires nonuni-
versal characteristics. For slightly larger r0=as, the energy of
the first excited state drops below the energy of the trimer
and then ‘‘traces’’ the three-body energy [43].We refer to the
feature where the four-body system acquires a new bound
state as the resonancelike feature. The existence and charac-
teristics of the resonancelike feature depend on the details of
the two-body interaction model employed. Away from the
resonancelike feature, the four-body energy shows a very
similar range dependence as the three-body energy, suggest-
ing that the four-body energy is roughly a constant multiple
of the three-body energy. Moreover, it is clear from Fig. 2
that E3=E4 increases with increasing mass ratio [44]. A
precise extrapolation of the four-body energies to the
zero-range limit is challenging, since numerical issues limit
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FIG. 1 (color online). Scaled energies as a function of r0=as.
The dashed line shows E2=jEZR

2 j. The symbols show E3=jEZR
2 j

for � ¼ 8:25–10:5 (top to bottom), in steps of 0.25; E3 is
determined by the stochastic variational approach. Dotted lines
show three-parameter fits. Inset: Symbols show EZR

3 =jEZR
2 j as a

function of �. The solid line shows a four-parameter fit.
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our calculations to r0=as * 0:004 and the resonancelike
feature prevents us from performing unambiguous fits.
We estimate that the four-body system becomes bound
around �c;4 ¼ 9:5.

To provide further evidence that the four-body states are—
away from the resonancelike feature—universal, we

analyze the hyperradial density PðRÞ, where �R2 ¼
P

n�1
j¼1 Mð~rj � ~RcmÞ2 þmð~rn � ~RcmÞ2 and ~Rcm denotes the

center-of-mass vector of the n-body system. A small hyper-
radiusR implies that alln particles are close together, while a
large hyperradius implies that two or more particles are far
away from each other [45]. The hyperradial density PðRÞ,
normalized such that

R1
0 PðRÞdR ¼ 1, indicates the like-

lihood of finding the n-particle system with a given R. We
calculate the hyperradial densities aswell as other structural
properties by sampling the n-particle density obtained
by the stochastic variational approach via a Metropolis
walk [46].

Figures 3(a) and 3(b) show the hyperradial densities
PðRÞ for n ¼ 3 (� ¼ 8:5 and L� ¼ 1�) and n ¼ 4
(� ¼ 9:75 and L� ¼ 1þ) for various r0=as [47]. For these
mass ratios, the three- and four-body systems support very
weakly bound states. To allow for a direct comparison,

dotted and solid lines in the inset in Fig. 3(a) show the
hyperradial densities for n ¼ 3 (� ¼ 8:5) and n ¼ 4
(� ¼ 9:75) for r0=as ¼ 0:004. The hyperradial densities
for n ¼ 3 with � ¼ 8:5 and n ¼ 4 with � ¼ 9:75 agree
qualitatively. They have a small amplitude for R=as � 1,
peak around R=as ¼ 2, and fall off exponentially for
R � as for all r0=as considered. For fixed �, the hyper-
radial densities move smoothly ‘‘outward’’ with decreas-
ing r0=as. Importantly, the hyperradial density has
vanishingly small amplitude not only when R � r0 but
also for notably larger R values [48]. For n ¼ 3, this is
consistent with the hyperradial density obtained within the
zero-range framework [20,49], confirming that the three-
body states considered are fully universal, i.e., fully deter-
mined by as. The qualitatively similar behavior of the
n ¼ 3 and 4 hyperradial densities for similarly weakly
bound states provides, combined with the energetics,
strong evidence that the four-body states are also universal.
The dash-dotted line in the inset in Fig. 3(a) shows the

hyperradial density for n ¼ 3, � ¼ 9:75, and r0=as ¼
0:004. The three-body system is more tightly bound than
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FIG. 3 (color online). (a) Solid, dashed, dotted, and dash-dotted
lines show PðRÞ of the energetically lowest-lying state for n ¼ 3,
� ¼ 8:5, and r0=as ¼ 0:004, 0.005, 0.006, and 0.015, respectively.
Inset: Dotted, dash-dotted, and solid lines show PðRÞ for n ¼ 3
(� ¼ 8:5 and r0=as ¼ 0:004), n ¼ 3 (� ¼ 9:75 and r0=as ¼
0:004), and n ¼ 4 (� ¼ 9:75 and r0=as ¼ 0:004), respectively.
(b) Solid, dashed, dotted, and dash-dotted lines show PðRÞ for
n ¼ 4, � ¼ 9:75, and r0=as ¼ 0:004, 0.005, 0.006, and 0.015,
respectively. For r0=as ¼ 0:004, 0.005, and 0.006, the energetically
lowest-lying state is considered. For as=r0 ¼ 0:015, the energeti-
cally second-lowest-lying state is considered. Inset: Solid and
dotted lines show nradðrjÞ for the heavy and light particles, respec-
tively, for n ¼ 4, � ¼ 9:75, r0=as ¼ 0:004, and 1þ symmetry.
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FIG. 2 (color online). Scaled energies as a function of r0=as
for (a) � ¼ 9:5, (b) � ¼ 9:75, and (c) � ¼ 10. The dashed lines
show E2=jEZR

2 j, while the crosses (stochastic variational ener-

gies) and solid lines (fit) show E3=jEZR
2 j (these energies are also

shown in Fig. 1). Circles and triangles show E4=jEZR
2 j for the

energetically lowest-lying and second-lowest-lying four-body
states, respectively. Dotted lines serve as a guide to the eye.
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the four-body system with the same � and r0=as (solid
line). In a naive picture, one may imagine that the four-
body system is comprised of a trimer with a fourth atom
loosely attached to the trimer. Structures like this have
been observed for the excited tetramer state attached to
the Efimov trimer state comprised of three identical bosons
[9,10]. Our analysis of the pair distribution functions and
radial densities indicates that the situation for the tetramers
considered here is different. The structural properties of the
tetramer for a given � loosely resemble those of the trimer
with smaller � but comparable binding energy. Solid and
dotted lines in the inset in Fig. 3(b) show the radial density
nradðrjÞ, normalized such that 4�

R1
0 nradðrjÞr2jdrj ¼ 1, for

the heavy and light particles of the n ¼ 4 system; the
position vector ~rj, j ¼ 1; . . . ; n, is measured with respect

to ~Rcm and rj ¼ j~rjj. For large rj, the radial densities of the
heavy particles and the light particle are nearly indistin-
guishable. For small rj, nrad goes to zero for the heavy

particles but has an appreciable amplitude for the light
particle, suggesting that the light particle is ‘‘shared’’
among the heavy particles.

In summary, we analyzed heavy-light mixtures in
three spatial dimensions, where the heavy-light pairs inter-
act through short-range potentials with positive s-wave
scattering lengths. Despite the Pauli exclusion principle,
which acts as an effective repulsion between the identical
heavy fermions, the four-body system supports a universal
bound state if the mass ratio between the heavy and light
particles is larger than about 9.5. The light particle acts as a
mediator that ‘‘glues’’ the four-body system together, just
as electrons in Hþ

2 or H2 glue together the protons by way

of the exchange interaction [50]. Although the three-body
energy shows a fairly strong dependence on r0, we found
that the ratio E4=E3 is, away from the resonancelike
feature, roughly constant for a fairly wide range of r0=as
values, suggesting that the universal four-body states
can be observed in cold atom experiments with current
technologies. The existence of universal tetramer states
opens the possibility to search for novel tetramer phases
in many-body systems, promising a rich phase diagram
of heavy-light mixtures on the positive scattering length
side. In the future, it will be interesting to investigate
how the universal four-body states discussed here are
affected by nonuniversal three- and four-body states and
how these states are connected to Efimov tetramers that
have been predicted to exist for 13:384< �< 13:607 [22].
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Smithsonian Astrophysical Observatory.
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