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In semiconductor-superconductor hybrid structures a topological phase transition is expected as a

function of the chemical potential or magnetic field strength. We show that signatures of this transition can

be observed in nonlinear Coulomb blockade transport through a ring shaped structure. In particular, on the

scale of the superconducting gap and for a fixed electron parity of the ring, the excitation spectrum is

independent of flux in the topologically trivial phase but acquires a characteristic h=e periodicity in the

nontrivial phase. We relate the h=e periodicity to the recently predicted 4� periodicity of the Josephson

current across a junction formed by two topological superconductors.
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Introduction.—The investigation of topological phases
of quantum systems has become one of the most exciting
developments in the condensed matter community. Of
particular interest are the topological properties of wave
functions (WFs) and exotic quasiparticles [1,2]. For this
reason, much effort has been invested in the study of
topological superconductors (TSCs), which have been pre-
dicted to host Majorana fermions [3–11]. One of the defin-
ing properties of a topologically ordered state is the ground
state degeneracy on surfaces with nonzero genus. In par-
ticular, the grand canonical ground state of the px þ ipy

(nontrivial) TSC on the torus strongly depends on bound-
ary conditions (BCs) for each of the two fundamental
cycles [3,12]. The three ground states with at least one
antiperiodic BC are all described by even parity WFs,
while the ground state with only periodic BCs shows an
odd parity ground-state WF. In contrast, the ordinary
s-wave (trivial) superconductor (SC) on the torus possess
a fourfold degenerate ground state with an even parity [12].

In this Letter, we consider a ring shaped one-
dimensional SC in the limit where the gap� is much larger
than the single-particle level spacing d. In the Coulomb
blockade regime with a fixed particle number N, the
degeneracy of grand-canonical ground states on the torus
is reflected in the excitation spectrum, which can be
observed in nonlinear transport [13,14]. In a trivial SC,
the lowest excitation above a ground state with even N
breaks a Cooper pair and hence costs the energy �E � 2�.
When changing BCs by varying the flux through the ring,
�E oscillates with a small amplitude d2=�, i.e. is essen-
tially flux independent [15]. The ground state for oddN has
an unpaired particle, and hence �E � d2=� with oscilla-
tions of the same magnitude. For nontrivial TSCs however,
ground states without an unpaired particle have even N
for antiperiodic BCs, and odd N for periodic BCs. As a
consequence, �E oscillates between d2=� and 2� with a

flux period of h=e, very different from the trivial case.
As these conclusions only rely on the existence of a
superconducting gap �> d, they should be robust against
disorder [16,17].
One promising candidate for TSCs are semiconductor

(SM) nanowires with strong Rashba spin-orbit coupling
in a magnetic field and proximity coupled to an s-wave
SC [18–21]. Detection schemes for the observation of
Majorana fermions in TSCs using the periodicity of
the Josephson effect [4,22–24], tunneling spectroscopy
[25–29], interferometry [30,31], and transport signatures
[32–34] have been suggested. The robustness of the
h=e-periodic Josephson effect against a Coulomb charging
energy larger than the Josephson energy was demonstrated
in Ref. [24]. Here, we go significantly beyond these results.
We suggest using a large Coulomb charging energy as a
tool to force the hybrid system into a state with fixed parity.
In this regime, we use an unbiased numerical minimization
to calculate the excitation energies as a function of flux
and particle number parity. The spectra show clear signa-
tures of both the trivial SC and nontrivial TSC phase as
expected from the general discussion above. The transition
between the trivial and nontrivial phase gives rise to the
closing and reopening of an excitation gap. Finally, we
compare the flux periodicity of the excitation spectra
with the 4� periodicity of a Majorana ring with one
weak link [22].
Model system.—We consider a SM nanowire with strong

spin-orbit coupling forming a loop of radius R, separated
from a gate electrode by a thin insulating layer. On top
of the nanowire a proximity coupled s-wave SC is depo-
sited; see Fig. 1. Tunneling into and out of the SM/SC
hybrid system is possible via source and drain electrodes.
Assuming a strong capacitive coupling between the nano-
wire and SC, the Coulomb energy of the hybrid system is
given by
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HC ¼ ECðN þ NSCÞ2 � eVGðN þ NSCÞ; (1)

where EC denotes the charging energy, VG the gate poten-
tial, and N (NSC) the number of excess electrons in the SM
(SC) attracted by the gate voltage. The Hamiltonian Eq. (1)
describes the Coulomb blockade physics of the hybrid
system: When the charging energy is degenerate with
respect to changing N þ NSC by one, a peak in the linear
conductance through the hybrid system is observed. For
nonzero source-drain voltage V, resonances in differential
conductivity appear when eV=2 ¼ EðN � 1Þ � EgsðNÞ,
where EðNÞ is the total energy of an N-electron state and
EgsðNÞ the respective ground-state energy. The distances
between these peaks are independent of the charging en-
ergy and directly give the fixed particle number excitation
spectrum, EðNÞ � EgsðNÞ. We assume that the excitation
gap in the SC is much larger than the effective gap �eff in
the SM. Then, all electrons in the SC are paired and
unpaired electrons can only show up in the SM. In this
regime, breaking of Cooper pairs occurs in the SM only
and can be observed as resonances in the nonlinear
Coulomb blockade conductance, similar to the experiment
on metallic nanograins [13]. Due to the charge 2e of
Cooper pairs, Andreev tunneling is not resonant for
eV=2<Ec � �eff and can be neglected [35–37].

The Hamiltonian describing the lowest energy subband
of the nanowire is given by [38]

H ¼ X
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where the operator c y
k� (c k�) creates (annihilates) an

electron with spin � and angular momentum @k, m� is
the effective band mass, and � the chemical potential.
We expect the following discussion to hold also for the
more general case of an odd number of occupied transverse
modes [16]. The Rashba spin-orbit coupling, �, couples
states fjk "i; jkþ 1 #ig and creates two helical bands with
the spin rotating within the x-y plane. The bands cross each
other at k ¼ �1=2��=�0. The magnetic field, B, tilts
the spin direction out of the x-y plane, removes the level
crossing, and opens a spin gap EZ ¼ g�BB=2. �=�0

denotes the magnetic flux through the loop in units of
the flux quantum �0 ¼ h=e. We find the single-particle
dispersion of the tilted helical bands,
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where ~k ¼ kþ�=�0 þ 1=2.
The s-wave SC is described within the Ginzburg-Landau

formalism by the free energy density
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where f0 is the free energy for zero flux, �s the pairing
potential, @q the condensate angular momentum, and ms

the mass of the Cooper pairs. Minimization of fGL
demands that q is the integer nearest to �2�=�0 and
that �fGL=��s ¼ 0. In the following, we neglect the small
oscillations in j�sj and focus on the large effect of parity
and flux on the addition spectrum of the SM ring. The
proximity coupling between the s-wave SC and the nano-
wire gives rise to a pairing term [10]

HSC ¼ X

k2Z

½�ð�Þc y
k"c

y
�kþq# þ��ð�Þc�kþq#c k"�; (5)

which couples states jk "i and j � kþ q #i. As a conse-
quence, the Hamiltonian is block diagonal, and within each
block a quadruplet fjk "i; jkþ 1 #i; j � kþ q #i; j � k�
1þ q "ig is coupled. For odd q, the quadruplet for
k ¼ ðq� 1Þ=2 reduces to the doublet fjðq� 1Þ=2 "i;
jðqþ 1Þ=2 #ig. The pairing potential �, which is reduced
in magnitude as compared to �s, plays a crucial role since
it sets two excitation energies. It both opens an effective
pairing gap at the Fermi surface and it modifies the Zeeman

gap at ~k ¼ 0. For �2 > E2
Z ��2 both helicities are occu-

pied in the ground state and � pairs generalized time-
reversed pairs at both sets of Fermi points. Hence, the

nanowire is in a trivial state with SC gaps at both �~kF
and ~k ¼ 0. For �2 < E2

Z ��2 on the other hand, the band
structure is different in an important way because now

there is a spin gap at ~k ¼ 0 and an SC gap only at �~kF
[20]. If EZ � �,�, it is justified to only consider the lower
band and to project the proximity induced singlet pairing
onto that band [19,21]. In this limit, the low-energy theory
of the ring model with flux� can be mapped onto Kitaev’s
model [22] with periodic BC and flux �þ�0=2. The
projected model contains doublets fjpi; j � pig for
�=�0 2 ½n� 1=4; nþ 1=4� with integer n and effective
momentum p ¼ k� q=2þ 1=2, whereas for �=�0 2
½nþ 1=4; nþ 3=4�, the doublet for p ¼ 0 reduces to the
singlet jp ¼ 0i.
In analogy to the generalized variational approach in

Ref. [14], we consider variational WFs for the projected
Hamiltonian. For each doublet, states with even and odd
parity are generated by applying the operators

FIG. 1 (color online). Cross section of the experimental setup
for a ring shaped SM/SC hybrid system. The SC is sputtered on
top of the SM which itself is deposited on a gate electrode.
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P�ðpÞ ¼ spc
y
p þ tpc

y�p; (6a)

PþðpÞ ¼ up þ vpc
y
pc

y�p (6b)

to the vacuum state. Here, the c operators denote electrons
of the lower helical band ��ðpÞ. General ansatz WFs for
even (odd) parity are

j�eðoÞf�pgi ¼
Y

p�0

P�pðpÞj0i;
Y

�p ¼ þ1ð�1Þ; (7)

where j0i is the vacuum for the c electrons. To obtain the
energy spectrum for arbitrary magnetic flux, we first mini-
mize the Ginzburg-Landau free energy Eq. (4) to find the
pair wave number q, which is then used to construct the
grand canonical mean-field ansatz WFs Eq. (7). For each
set of f�pg, we determine the corresponding energy by

unbiased minimization of EðN; f�pgÞ ¼ hHi þ�NN with

respect to the variational parameters (sp; . . . ; vp). Here �N

is fixed by the mean particle number N ¼ hP cypcpi in the

SM nanowire. By rank-ordering the EðN; f�pgÞ, we find

the ground states for both even and odd parity. To obtain
the excited states, we then apply the Bogoliubov operators

ayp;1¼upc
y
p�vpc�p and a

y
p;2 ¼ upc

y�pþvpcp with p > 0

to the ground-state WF.
In Figs. 2(a) and 2(b) we sketch a bare parabolic disper-

sion, the generalized time-reversed partners for � ¼
�h=2e, and the single-particle excitation spectrum. The
ground-state WF for odd parity is given by j�gs

o i ¼
P�ð0ÞQ PþðpÞj0i, where all time-reversed partners are
paired and the zero momentum electron is unpaired. The
lowest excited state has two unpaired electrons at pF and

pF þ 1, j�ij
o i ¼ aypF;i

aypFþ1;jj�gs
o i, which shows up in a

spectroscopic gap of 2�eff . On the other hand, the ground-
state for even parity is given by j�gs

e i ¼ P�ð0ÞP�ðpFÞ�Q
PþðpÞj0i with two unpaired electrons. In contrast to

the odd parity case, we find the lowest excited state by
breaking the pair at pF � 1 and creating a new one at pF,

j�ij
e i ¼ apF;ia

y
pF�1;jj�gs

e i. Therefore, the excitation ener-

gies for the even parity are determined by the level spacing.
In Figs. 2(c) and 2(d) we illustrate the pairing for � ¼ 0.
Here, we find that the behavior is reversed compared to the
case � ¼ �h=2e; i.e. the ground state for the even parity
contains only paired levels whereas the ground state for the
odd parity has one unpaired electron at the Fermi surface.
Numerical results.—We now consider the full Hilbert

space again. In analogy to what we explained above, we
define generalized operators P�ðkÞ for each quadruplet
of the unprojected Hamiltonian and construct the ansatz
WFs as in Eq. (7). We then minimize the energy EðNÞ,
where N ¼ hP c y

k�c k�i, to obtain the ground state [14].

The lowest excited states are again given by pairwise
creation of Bogoliubov quasiparticles near the Fermi sur-
face. We note that in the coupled SM/SC system, the
number of electrons in the nanowire is not a good quantum
number and the use of grand canonical WFs is fully
justified. We have verified that the excitation spectrum
depends smoothly on the mean particle number N.
Both InAs and InSb were proposed to be suitable semi-

conducting materials due to a strong spin-orbit coupling
[19,20]. For R ¼ 0:5 �m, characteristic values for these
materials are @

2=ð2m�R2Þ ¼ 0:002 meV, level spacing at
the Fermi energy d ¼ 0:08 meV, g�B ¼ 2 meV=T, and
�=R ¼ 0:02 meV [27]. Furthermore, we consider a prox-
imity potential � ¼ 0:5 meV which leads for EZ ¼ 1 meV
and � ¼ 0 to an effective pairing gap of �eff � 0:2 meV
[39,40]. To ensure single-electron tunneling through the
SM/SC system, we consider the case EC � �eff .
The external magnetic field B drives the hybrid system

through a topological phase transition. In the following,
B is varied in discrete steps with the flux always being a
(half-) integer multiple of�0, such that the only effect is a
variation of the Zeeman energy. Figure 3 shows excitation
energies as a function of B for several combinations of
magnetic flux and parity. We see qualitative differences
between the trivial phase of the nanowire for B & 0:5 T
and the nontrivial phase for B * 0:5 T [10]. For B &
0:5 T, results are typical for SC in ultrasmall metallic
grains [13,14]: for even electron parity, the excitation
spectrum displays a large spectroscopic gap 	2�eff ,
whereas no such gap appears for an odd parity, independent
of magnetic flux. The origin of the large gap for even parity
is that all excitations break a Cooper pair, while for odd
parity the ground state has one unpaired electron and
therefore the lowest excitation energies are determined
by the level spacing as d2=�eff [15].
For B * 0:5 T we observe a strikingly different parity

effect, and find that the excitation energies depend on both

FIG. 2 (color online). Sketch of the dispersion and the effec-
tive pairing for the lower helical band ��ðpÞ. The o markers (x)
denote the occupied (empty) single-particle levels for � ¼ 0.
The dashed ellipses illustrate the paired single-particle levels
when switching on the proximity induced SC pairing potential.
Arrows indicate the transport of a single quasiparticle to produce
the lowest excited state.
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magnetic flux and electron parity. In Figs. 3(a) and 3(d) we
find a spectroscopic gap that originates from breaking a
pair [compare to illustrations Figs. 2(a) and 2(d)], which
costs the energy 2�eff . In contrast, the excitation energies
in Figs. 3(b) and 3(c) are determined by the level spacing,
compare to illustrations Figs. 2(b) and 2(c). The topologi-
cal phase transition is mirrored by the closing and reopen-
ing of the excitation gap; see Fig. 3(d).

In Fig. 4, excitation energies as a function of magnetic
flux for both trivial (B ¼ 0:3 T) and nontrivial sectors
(B ¼ 1:0 T) are shown for even parity. In the trivial phase,
they are of order 2�eff with small �0=2 periodic oscilla-
tions of order d2=�eff; see Fig. 4(a). For the odd parity case
(not shown), they are determined by the level spacing.
In the nontrivial phase however, large oscillations with
period �0 and amplitude 2�eff are found; see Fig. 4(b):
The excitation energies for �=�0 2 ð1=4; 3=4Þ are deter-
mined by the level spacing, while they display the effec-
tive gap 2�eff for �=�0 2 ð3=4; 5=4Þ due to the pairwise
creation of Bogoliubov quasiparticles. For odd parity, we
qualitatively find the same spectrum but shifted by �0=2,
as follows from the earlier discussion. All these results
back up the general arguments in the introduction, con-
necting ground state degeneracies on the torus to parity and
flux periodicities of excitations.

We now relate the �0 flux periodicity in the nontrivial
phase to the recently discovered 4� periodicity of the
Josephson current between two TSCs [4,22,24]. To leading
order in the tunnel coupling, the Josephson energy between

two 1D TSCs is given by HJð��Þ ¼ i	1	2� cosð��2 Þ,
where 	1, 	2 are operators for the end Majorana states
connected by the junction, � is the tunneling amplitude,
and �� the phase difference between the SCs. The opera-
tor i	1	2 with eigenvalues �1 describes the parity of the
neutral fermion state shared between the two Majoranas.

For a fixed parity, HJ has a period of 4�. When inserting
the Josephson junction into a ring structure, the phase
difference between the two ends is related to a flux through
the ring via �� ¼ �=�0, and the 4� phase periodicity is
equivalent to a�0 flux periodicity. If the parity is not fixed,
a change of �� by 2�	�0=2 will change the occupancy
ði	1	2 þ 1Þ=2 of the neutral fermion and hence the ground
state parity. This is in full analogy with our finding that in
the nontrivial phase the parity of the ground state changes
(if coupled to a reservoir) when changing the flux through
the ring by �0=2. Since occupying the neutral fermion
describes a change in the parity of the pairing WF and
not in the mean number of (charged) particles, the term
‘‘neutral fermion’’ is appropriate.
Conclusion.—We have investigated the signatures of

Coulomb blockade transport through a SM/SC hybrid
nanoring, and have shown that peculiar parity and flux
periodicity effects in the excitation spectrum mirror the
distinct ground state degeneracies of trivial and nontrivial
SCs on the torus. The excitation spectrum provides a
clear signature of the topological phase transition, and
the h=e flux periodicity of excitation energies in the non-
trivial phase is reflected in the 4� periodicity of the
Josephson Hamiltonian for a tunnel junction between two
1D pþ ip TSCs.
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