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Graphene is known as the strongest 2D material in nature, yet we show that moderate charge doping
of either electrons or holes can further enhance its ideal strength by up to ~17%, based on first-principles
calculations. This unusual electronic enhancement, versus conventional structural enhancement, of the
material’s strength is achieved by an intriguing physical mechanism of charge doping counteracting the
strain induced enhancement of the Kohn anomaly, which leads to an overall stiffening of the zone boundary
K, phonon mode whose softening under strain is responsible for graphene failure. Electrons and holes
work in the same way due to the high electron-hole symmetry around the Dirac point of graphene, while
overdoping may weaken the graphene by softening other phonon modes. Our findings uncover another
fascinating property of graphene with broad implications in graphene-based electromechanical devices.
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Graphene is a single layer of sp?-hybridized carbon
atoms arranged in a honeycomb lattice, with in-plane o
bonds forming the skeletons of honeycomb and out-of-
plane 7 bonds forming conjugated 2D electron gas. This
unique structure results in various fascinating properties of
graphene [1,2]. In particular, mechanically graphene pos-
sesses extremely high stiffness and strength and is known
as the strongest 2D material in nature [3], which inspires a
range of potential applications such as lightweight high-
strength materials and composites. Recent theory reveals
that the failure mechanism of graphene under tension lies
in the softening instability of the zone-boundary K, pho-
non mode occurring at a critical strain of ~15% [4].

The search for and design of hard materials has long
attracted great interest with significant technological imp-
lications [5,6]. The ideal strength of materials is usually
enhanced by structural designs at atomic and molecular
level. For example, carbon clathrate (C-46) is found to
have a larger ideal strength than diamond because its spe-
cial cage structure effectively inhibits the instability of
the carbon sp? to sp? transition [7]. Common strategies
of material strengthening are to form composites [8] or by
alloying and doping, such as high-strength steels formed
with different dopants in Fe-C [9]. Here, using first-
principles calculations, we demonstrate an unusual elec-
tronic enhancement of the material’s ideal strength by
pure charge doping, in contrast to the conventional struc-
tural enhancement. We show that moderate charge doping
(= 10 cm™?) of either electrons or holes can increase the
strength of graphene by up to ~17%. We further show that
the strain induced softening of the zone-boundary K; mode,
which was identified as being responsible for graphene
failure [4], is associated with the strain enhanced Kohn
anomaly in graphene. The surprising charge strengthening
of graphene we discover is caused by doping induced
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suppression of the Kohn anomaly, which counteracts the
strain effect, and hence hardens the K; mode. Electrons and
holes work in the same way due to the high electron-hole
symmetry around the Dirac point of graphene.

Graphene is often doped either intentionally or uninten-
tionally. When graphene is placed on a substrate [10,11]
or adsorbed with foreign atoms and molecules [12,13], it
is naturally doped due to charge transfer. In electronic
devices, graphene is purposely doped by charge impurities
[14,15] or by applying a gate voltage [16,17]. Therefore,
understanding the effect of doping on properties of
graphene is of both fundamental interest and technologi-
cal significance. We have performed a systematic first-
principles computational study of the effect of doping on
graphene’s ideal strength through calculations and analy-
ses of phonon spectra of doped graphene under external
strain. Our method is based on density-functional theory
and density functional perturbation theory in pseudo-
potential plane-wave formalism, as implemented in the
QUANTUM-ESPRESSO code [18]. We use local density ap-
proximation and a plane-wave cutoff energy of 150 Ry.
A supercell containing a single layer of graphene and a
15 A of vacuum is used to eliminate the interaction
between the graphene and its periodic images. A 30 X
30 X 1 uniform k point mesh is used for the integration
over electronic states, and a 6 X 6 X 1 g point grid is used
for the phonon calculations to obtain the dynamic matrices.
The Methfessel-Paxton smearing [19] with a smearing width
of 0.02 Ry is used for the self-consistent calculations to
ensure the convergence of the phonon frequency. The charge
doping is simulated by adding or removing electrons to the
graphene with a compensating uniform charge background
of opposite sign.

Usually, a material’s ideal (intrinsic) strength can be
traced down to its bond strength. The bond strength,

© 2012 American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.109.226802

PRL 109, 226802 (2012)

PHYSICAL REVIEW LETTERS

week ending
30 NOVEMBER 2012

in principle, can be greatly affected by the amount of
charge in the bond. Adding (removing) an electron to
(from) the bonding (antibonding) molecular orbital of
a diatomic molecule will significantly strengthen its
bond, while the reverse action will weaken the bond [20].
However, adding or removing electrons to a solid material
(i.e., doping) has negligible effects on the material’s
strength overall because usually there are many more
bonds than electrons. At a typical semiconductor doping
level of 10'® cm™3, only one electron is added (or
removed) every ten thousand bonds.

Consider the case of graphene, a true 2D material one
atomic layer thick. In a graphene based field-effect tran-
sistor, a doping level up to 4 X 10'* cm™? for both elec-
trons and holes has been reached by electrical gating [17],
which corresponds to one electron being added to or
removed from a few tens of bonds. Therefore, one might
expect a larger effect of doping on graphene’s strength than
on bulk materials’ strength. However, intuitively, based on
bond strength consideration, one would expect charge
doping of either the electrons or holes will weaken the
graphene strength because electrons would be added (for n
doping) to the antibonding states above the Dirac point or
removed (for p doping) from the bonding states below the
Dirac point, respectively. In contrast, we discover that at
the typical level of doping seen in experiments, the ideal
strength of graphene is substantially enhanced by either
electrons or holes up to ~17%. This surprising phenome-
non of pure electronic strengthening of materials is asso-
ciated with the fact that the ideal strength of graphene is
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FIG. 1 (color online).
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intricately related to the existence of the Kohn anomaly
and its strain enhancement, an interesting property unique
to graphene.

Figure 1 shows the calculated phonon spectra of intrin-
sic and doped graphene under different tensile strains,
e = a/ay — 1, where a and a are the strained and the
equilibrium lattice constants of graphene, respectively. The
primitive unit cell containing two C atoms is used for
phonon calculations. Specially, we draw the readers’ atten-
tion to the gradual softening of the K; mode with the
increasing tensile strain, as shown from Figs. 1(c) and 1(e)
and from Figs. 1(f) to 1(i). [Note that when the K| mode is
completely softened, for convenience, we plot the imaginary
part of its frequency as negative values in Figs. 1(b), 1(e),
and 1(i).] For intrinsic graphene, our calculated phonon
spectra without strain [Fig. 1(a)] agree very well with the
previous calculations [21,22]. The frequency of the K; mode
becomes “negative” (the soft mode) at a critical strain
of 14.9% [Fig. 1(b)], signifying the ideal strength of intrinsic
graphene, which also agrees well with the previous
calculation [4].

Interestingly, when graphene is doped with either elec-
trons or holes, the phonon instability under tension is
greatly suppressed. Figures 1(d) and 1(g) clearly show
that in the doped graphene, the frequency of the K; mode
remains positive at the strain of 14.9% in both n- and p-type
doped graphene, indicating an enhancement of graphene
strength beyond the strain of 14.9%. At a doping level of
7.6 X 103 cm™2, with the further increase of strain, the K,
mode will eventually become soft (negative frequency) at a
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Phonon spectra of intrinsic and doped (of 7.6 X 10'* cm™2 carrier density) graphene under different strains.

(a) and (b), The intrinsic graphene. (c), (d), and (e), n-type graphene. (f), (g), (h), and (i), p-type graphene. The red arrows indicate the

K, mode softened under strain.
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critical strain of 16.7% in the n-type graphene [Fig. 1(e)]
and of 16.8% [Fig. 1(i)] in the p-type graphene, respec-
tively. This corresponds to an enhancement of graphene’s
ideal strength by ~13% at this doping level.

The failure of graphene under tensile strain is known to
be triggered by the mechanism of strain induced softening
of the zone-boundary K; phonon mode [4]. However, the
underlying reason for the softening of K; mode rather than
other modes is not fully understood. Here, we show that
this is associated with the strain enhancement of the Kohn
anomaly in graphene. The Kohn anomaly is a sudden soft-
ening of the phonon modes occurring for certain phonons
with a wave vector q connecting two electronic states with
wave vectors (K, k) on the Fermi surface, k/ = q + k [23].
It arises from the screening effects of electrons on the
atomic vibrations, which change the vibrations abruptly at
those special q points. In graphene, due to its peculiar
pointlike Fermi surface (Dirac point), the Kohn anomaly
can in principle occur for phone modes at q = I' (zone
center) and q = K (zone boundary) [24]. However, the
large difference in the electron-phonon coupling strength
for the phonon modes at I' versus K leads to a notable
anomaly only for the K| mode [25].

Under tensile strain, the C-C bond length is stretched,
resulting in the in-plane phonon modes softening. We
propose that the existence of the Kohn anomaly makes
the K; mode (one of the in-plane modes) much more
susceptible to softening under strain and hence responsible
for graphene failure under strain. In other words, the failure
is caused by a strain enhancement of the Kohn anomaly
that accelerates the softening of the K; mode. The Kohn
anomaly is characterized by a kink (cusp) in the phonon
dispersion around the point of the anomaly, i.e., the K;
point in the present case [24]. We have calculated exactly
the phonon frequencies at a series of g points around K as
a function of strain, as shown in Fig. 2(a). Clearly, all the
dispersion curves are characterized by a cusp, the signature
of the Kohn anomaly at the K| point. Most interestingly,
the cusp becomes deeper (i.e., larger discontinuity in the
first derivative of the phonon dispersion) with the increas-
ing tensile strain, indicating a strain enhanced Kohn anom-
aly, which in turn drives the rapid softening of the K; mode
under strain.

It is known that charge doping weakens the Kohn anom-
aly at the K| point [25]. Thus, one may expect that charge
doping will counteract against strain effect and stiffen
the K; mode under strain conditions to enhance the gra-
phene strength. Apparently, Fig. 1 already suggests that the
doping enhanced graphene’s ideal strength is associated
with the charge stiffening of the of K; mode under strain
[see Figs. 1(d) and 1(g)]. To further reveal this, we plot in
Fig. 2(b) the adiabatic frequency shift of the K; mode as a
function of the doping level of electrons and holes, in the
unstrained and a 14.9% strained graphene. Clearly, we see
that the frequency of the K; mode in both the unstrained

and strained graphene increases with the increasing carrier
concentration of either the electrons or holes. Here, the
equilibrium lattice constant of intrinsic graphene is used,
giving the electron-hole symmetry. If the lattice constants
of doped graphene are used, there will be slight electron-
hole asymmetry at high doping levels. We also note that
we only calculated the adiabatic frequency shift at the K;
point. It has been shown that the nonadiabatic dynamic
effect is important for the I' point [26,27], which may
affect the K; point also, but we expect the effect is only
quantitative without qualitatively altering our results and
conclusion.

Qualitatively, doping weakens the Kohn anomaly by
shifting the Fermi surface away from the Dirac point, so
as to move away from the k’ = q + k condition and hence
stiffening the K; mode. In this regard, because of the high
electron-hole symmetry of graphene around the Dirac
point, both the electron and hole doping will shift the
Fermi surface away from the Dirac point in a symmetric
fashion [28], resulting in a similar effect. In addition,
Fig. 2(b) shows that the doping induced frequency shift
of the K| mode in the strained graphene is much larger than
that in the unstrained graphene. The reason for such a large
difference is not fully clear, but it is consistent with the fact
that the Kohn anomaly has been enhanced by strain in the
strained graphene as shown above [Fig. 2(a)], so corre-
spondingly when the condition of the “‘enhanced” Kohn
anomaly is removed by doping, it may result in a larger
shift of the K; mode.

To further confirm the above mechanism of the charge
doping stiffened zone-boundary K; mode responsible
for strengthening the graphene, we next determine directly
the ideal strength of doped graphene by both electrons
and holes, in comparison with intrinsic graphene, by com-
putational tensile testing. To do so, we calculate the stress
tensor as a function of biaxial strain using a large unit cell
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FIG. 2 (color online). The behavior of the K; mode under
strain and doping. (a) The phonon dispersions around the K
mode under different strains: 0.0%, 5%, 10%, and 14.5%. The
frequencies of the K| modes under different strain are set as the
reference of zero frequency. (b) The adiabatic frequency shifts of
the K; mode (in reference to the intrinsic graphene) as a function
of the doping level for the unstrained graphene and strained
graphene at the 14.9% strain, respectively.
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FIG. 3 (color online). (a) The stress (o) versus biaxial strain (&)
for intrinsic, electron- and hole-doped (at a doping level of
7.6 X 10'3 cm~?) graphene. The vertical lines denote the loca-
tions of structural instabilities. Inset: The graphene supercell used
for calculating the stress-strain curve. (b) Atomic displacements
of A; and B; phonon modes.

of graphene with six C atoms [see the left inset of
Fig. 3(a)], which is three times the size of the primitive
unit cell. This choice of unit cell is made to allow the
freedom of lattice distortion representative to the desig-
nated K| mode as done before for intrinsic graphene [4].
Group theory warrants that the vibration of the K; mode is
the combination of A; and B; modes [29], as illustrated in
Fig. 3(b), and the A; mode is shown to be energetically
more favorable [4]. Figure 3(a) shows the results of such a
computational tensile testing. By locating the breaking
points (discontinuities) in the stress-strain curves, we
determine the critical strains where the structural phase
transition associated with the K; mode softening occurs.
They are 14.9%, 16.7%, and 16.9% for the intrinsic,
electron-doped and hole-doped graphene, respectively
[see the right inset of Fig. 3(a)], which are in excellent
agreement with our preceding phonon instability calcula-
tions. Above the critical strains, the graphene lattice is seen
to be driven to isolated hexagonal rings to start breaking
down. Thus, the computational tensile testing results con-
firm again that the ideal strength of doped graphene is
indeed enhanced by either electrons or holes through the
charge doping stabilized K; phonon mode. On a side note,
the stress-strain curves of doped graphene coincide with
that of intrinsic graphene below critical strains, indicating
that the elastic constant of graphene is almost unaffected
by doping.

Finally, we determined the maximum enhancement of
graphene strength can be achieved by charge doping.
Figure 4 summarizes the calculation results of critical
strains, where the phonon instability occurs, as a function
of the carrier concentration of electrons and holes (plotted
on the negative x axis). Most notably, the electronic
strengthening of graphene by doping cannot go indefinitely
with the increasing carrier concentration, but exhibits
an upper limit. The maximum critical strain for electron
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FIG. 4 (color online). The critical strains (where phonon insta-
bility occurs) of graphene as a function of carrier concentration of
electrons and holes (plotted on the negative x axis). Inset: The
phonon spectra of 1.9 X 10'* cm™2 electron-doped graphene
under 16.2% strain.

doping is 16.9% at a doping level of 9.6 X 10'3 cm™?;
for hole doping it is 17.4% at a doping level of
1.34 X 10" cm~2. This corresponds to a substantial
increase of graphene strength by ~13.4% and 16.8% for
doping of electrons and holes, respectively. The slight
asymmetry in the n- versus p-type graphene at high doping
level is caused by the different equilibrium lattice constant
of the n- versus p-type graphene. Basically, electron dop-
ing induces a lattice expansion while hole doping induces a
lattice contraction, determined by the sign of “quantum
electronic stress’ induced by the electron versus hole [30].
Consequently, the critical strains of p-type graphene are
larger than those of n-type graphene, and the difference
becomes more pronounced as the doping level increases.

In fact, as the doping increases, the K; mode continues to
stiffen because the Kohn anomaly at the K; point continues
to be weakened. Thus, if it were only for the K; mode,
the graphene strength would be enhanced indefinitely.
However, in reality, there are many other phonon modes,
and strain may induce softening of another phonon mode
different from K; to cause failure of the heavily doped
graphene. This is clearly seen in the inset of Fig. 4, which
shows the phonon spectra of the 1.9 X 10'% ¢m~2 electron-
doped graphene under the 16.2% strain, with a softened
mode occurring away from the K point along the K-I" high
symmetry line.

In conclusion, we discover a surprising pure electronic
enhancement of graphene strength which is qualitatively
different from the common conventional structural enhan-
cement of materials strength. Charge doping changes the
electronic structure, resulting in a phonon renormalization
of graphene that improves its mechanical properties. It
arises from an intriguing mechanism of charge doping
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counteracting against strain to affect the degree of Kohn
anomaly. It is important to note that the predicted enhance-
ment of graphene strength up to 17% occurs at typical doping
levels easily accessible in real experimental samples, such
as those used in graphene based field-effect transistor
devices [16,17]. It underscores another fascinating property
of graphene with broad implications in graphene-based
electromechanical devices.
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