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We present a method for obtaining outer-valence quasiparticle excitation energies from a density-

functional-theory-based calculation, with an accuracy that is comparable to that of many-body perturbation

theorywithin theGWapproximation. The approach uses a range-separated hybrid density functional, with an

asymptotically exact and short-range fractional Fock exchange. The functional contains two parameters, the

range separation and the short-range Fock fraction. Both are determined nonempirically, per system, on

the basis of the satisfaction of exact physical constraints for the ionization potential and frontier-orbital

many-electron self-interaction, respectively. The accuracy of the method is demonstrated on four im-

portant benchmark organic molecules: perylene, pentacene, 3,4,9,10-perylene-tetracarboxylic-dianydride

(PTCDA), and 1,4,5,8-naphthalene-tetracarboxylic-dianhydride (NTCDA). We envision that for the outer-

valence excitation spectra of finite systems the approach could provide an inexpensive alternative to GW,

opening the door to the study of presently out of reach large-scale systems.
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The development of a nonempirical theory for quantita-
tive electronic structure calculations, which combines
predictive power with computational simplicity, is a long-
standing challenge for molecular and solid-state physics
[1,2]. Presently, many-body perturbation theory within the
GW approximation [3–5] is widely considered to be the
first-principles approach that provides the best balance
between accuracy and computational tractability. This
approach is couched in a formally rigorous theory for
quasiparticle excitations and has been shown to provide
remarkably quantitative predictions for the electronic
structure of a wide variety of molecular, solid-state, and
low-dimensional systems (see, e.g., Refs. [4–10]).

Unfortunately, present-day GW calculations are still
significantly limited in system size and complexity. They
can also be challenging to converge [11–13]. Therefore, it
is common practice to rely instead on density functional
theory (DFT) [14], which is much simpler computation-
ally. However, this comes at a significant cost in accuracy.
Solutions of the Kohn–Sham equation (in either its original
[15] or generalized [16] form) generally do not rigorously
correspond to quasiparticle energies and orbitals. Practical
DFT calculations can still be, and often are, successful
because occupied DFT eigenvalues can, in principle, serve
as good approximations to removal energies of energeti-
cally high-lying occupied orbitals [6,17–20]. Even so,
two major problems remain [17]. First, it is often found
that the eigenvalue spectrum can depend strongly on the

choice of the approximate density functional. Second, the
energies of the highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital
(LUMO) typically do not correspond to the ionization
potential and electron affinity, respectively.
In this Letter, we show that DFT-based calculations, in

which outer-valence orbitals do represent quasiparticle ex-
citations, are in fact possible, opening the door to inexpen-
sive prediction of quasiparticle excitations. Our approach is
based on a range-separated hybrid density functional, which
is optimally tuned to obey Koopmans’ (ionization potential)
theorem and to minimize frontier-orbital many-electron
self-interaction errors, without any recourse to empiricism.
Recently, Stein et al. [21] suggested a new method for

predicting the fundamental gap of finite systems from
generalized Kohn–Sham HOMO and LUMO eigenvalues,
based on a nonempirical optimally tuned range-separated
hybrid (OT-RSH) functional. In an RSH functional, the
Coulomb repulsion is partitioned into a short-range (SR)
and a long-range (LR) part, such that the LR exchange is
treated with a Fock operator whereas the SR exchange is
treated using (semi-) local exchange [22]. The range-
separation parameter, �, is optimally tuned by demanding
that the DFT version of Koopmans’ theorem (ionization
potential theorem) be obeyed, i.e., by determining �, per
system, such that the HOMO eigenvalues of the neutral and
anionic system are as close as possible to the ionization
potential and electron affinity of the neutral, respectively,
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making the gap contribution of a derivative discontinuity
[17,23,24] negligible. Refaely-Abramson et al. have shown
the efficacy of this approach, using this optimally tuned
RSH, denoted here as OT-�RSH, for a range of organic
molecules of relevance to photovoltaics [25]. This results
in HOMO and LUMO levels on par with the GW ones. It
can perhaps be hoped, then, that the outer-valence occu-
pied orbitals of finite systems could also be well-described
with this tuned functional.

To test this notion, Figs. 1(a) and 1(b) present a com-
parison of experimental photoemission spectra and theo-
retical DFT and GW eigenvalue spectra [26] for perylene
and pentacene. Here and throughout, DFTeigenvalue spec-
tra were performed using QCHEM [28] with the cc-PVTZ
basis set [29], and GW calculations were performed using
the BERKELEYGW code [30] (details are given in the
Supplemental Material [27]). For both molecules, the GW
spectrum agrees well with experiment. The DFT spectrum
constructed using the generalized gradient approximation
(GGA) in its Perdew–Burke–Ernzerhof (PBE) form [31]
does not agree with GW but is primarily rigidly shifted
from it, owing to the missing derivative discontinuity in the
exchange-correlation functional [23]. Hybrid functionals,
e.g., PBE0 [32] (which is based on the PBE functional
but with 25% of the GGA exchange replaced by Fock
exchange) mitigate (but do not solve) the derivative dis-
continuity problem [17,24] and consequently improve the
spectrum by shifting (and slightly stretching) it. Still, the
PBE0 spectrum exhibits a significant rigid shift. Conversely,
the OT-�RSH (with PBE-based local exchange and corre-
lation terms) is in quantitative agreement with GW and

experiment (average unsigned error of �0:2 eV over a
range of �3 eV below the HOMO), as hoped for.
Unfortunately, this simple idea is not sufficient

for more complex molecules, such as 3,4,9,10-
perylene-tetracarboxylic-dianydride (PTCDA) and 1,4,5,8-
naphthalene-tetracarboxylic dianhydride (NTCDA)
[Figs. 1(c) and 1(d)], where GW spectra generally agree
with experiment but the OT-�RSH spectra present serious
deviations from GW in both orbital position and ordering.
These molecules have been chosen because, while still
reasonably simple, they exhibit a mixture of localized
(on the anhydride side groups) and delocalized (on the
perylene or naphthalene core) outer-valence orbitals, as
shown in Figs. 1(c) and 1(d). Dori et al. [33] pointed out
that this causes the PBE spectrum of PTCDA to be in poor
agreement with GW even after a rigid shift, as also shown
in Fig. 1(c). The spectral distortions result primarily from
spurious positive energy shifts of the localized orbitals,
leading to the conjecture that they reflect significant
self-interaction errors (SIE) [33]. Körzdörfer et al. [34]
showed that NTCDA has a similar problem, as can be
seen in Fig. 1(d), and proved the conjecture by quantifying
the per-orbital SIE for both molecules. Furthermore, they
showed that self-interaction-corrected calculations, within
a generalized optimized effective potential scheme, pro-
vide a nonempirical route for obtaining agreement with
experiment, up to a rigid shift of both HOMO and LUMO
(and possibly some mild stretching).
For both PTCDA [33] and NTCDA [34], a different

nonempirical route for improvement of the eigenvalue
spectral shape is the use of the above-mentioned PBE0
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FIG. 1 (color online). Outer-valence eigenvalue spectra of (a) perylene, (b) pentacene, (c) PTCDA, (d) NTCDA, as obtained from
DFT calculations using the PBE, PBE0, and OT-�RSH, with additional OT-��RSH results for PTCDA and NTCDA, compared with
GW eigenvalue spectra and with experimental gas-phase photoemission spectra [58]. H and L denote HOMO and LUMO, respectively.
For PTCDA and NTCDA, representative localized (purple) and delocalized (yellow) orbitals are presented. All computational spectra
have been broadened by convolution with a Gaussian to facilitate comparison with experiment.
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hybrid functional, which possesses a fixed fraction of
exact exchange, as shown in Figs. 1(c) and 1(d). Indeed,
Körzdörfer and Kümmel [35] showed that such hybrids can
incorporate an important part of the first-order correction
of the Kohn–Sham eigenvalues when used in a generalized
Kohn–Sham way, i.e., with nonlocal Fock exchange. With
conventional hybrid functionals, one may still discuss their
accuracy with respect to finer issues of orbital ordering
[36]. But in any case, they do not resolve the ionization
potential and fundamental gap problem. Thus, our goal is
to provide a generalized Kohn–Sham scheme that does
yield the correct excitation thresholds while retaining the
advantages of a conventional hybrid functional. We now
show that this is an achievable goal.

The results of Fig. 1 suggest that further improvement
could be obtained by combining a fraction of SR Fock
exchange that would improve the description of the local-
ized orbitals, with LR Fock exchange that is essential for
gap prediction. Such generalization of the RSH scheme has
in fact been suggested by Yanai et al. [37], who partitioned
the Coulomb operator according to

1

r
¼ �þ �erfð�rÞ

r
þ 1� ½�þ �erfð�rÞ�

r
: (1)

Note that this form reduces to that of a conventional hybrid
functional with the choice � ¼ 0 (for PBE0, � ¼ 0:25)
and to a ‘‘pure LR’’ RSH for � ¼ 0, � ¼ 1.

The parameters �, �, and � can be determined as
universal parameters semiempirically, as done for all three
of them in the CAM-B3LYP functional of Yanai et al. [37]
However, as discussed in, e.g., Refs. [21,24,25,38–40], no
set of fixed values is universally useful for spectroscopy.
Instead, we pursue the optimal tuning strategy, where we
determine all three parameters from first principles, per
system, based on the satisfaction of physical constraints.

First, following Ref. [41], we insist on �þ � ¼ 1. This
choice guarantees that full Fock exchange is obtained
asymptotically, which enforces the correct asymptotic
potential. This, in turn, is essential for retaining accurate
gap predictions [24]. As in Refs. [42,43], we shall use
PBE-based semilocal exchange and correlation compo-
nents. However, in these articles � was taken as a constant
of 0 and 0.2, respectively, with � a universal empirically
determined constant. We shall seek to optimize both � and
� nonempirically, on the basis of additional constraints.

Per each choice of �, � can be determined from first
principles by enforcing the ionization potential
(Koopmans’) theorem, i.e., by choosing � such that the
HOMO eigenvalue is as close as possible to the ionization
potential [44,45]. In principle, this exact condition should
be obeyed for any stable ionic state of the molecule.
Therefore, one can seek a � that best satisfies (say, in the
least-squares sense) multiple ionization potential condi-
tions by minimizing a target function Jð�Þ of the form

J2ð�;�Þ ¼ X

i

½"�;�HðNþiÞ þ IP�;�ðN þ iÞ�2; (2)

where "HðNþiÞ is the HOMO eigenvalue of the N þ i
electrons system, N being the number of electrons in the
neutral system and i an integer representing electrons
added or removed from it, with IPðN þ iÞ the correspond-
ing ionization potential calculated from energy differences.
In previous work that emphasized accurate gap prediction
[21,24,25,38,40], � was chosen so as to satisfy this condi-
tion as closely as possible for both neutral and anion [i.e.,
i ¼ 0 and 1 in Eq. (2)], so as to obtain both the ionization
potential and the electron affinity (the latter being equal to
the ionization potential of the anion). Here, this does not
suffice, as � must also reflect a balance of SR and LR
exchange appropriate for the treatment of localized states.
Because with OT-�RSH the highest localized orbital is
HOMO-1, for both PTCDA and NTCDA, we additionally
impose an ionization potential condition for the cation, i.e.,
i ¼ �1, 0, and 1 in Eq. (2) (see the Supplemental Material
for a discussion of why this matters [27]).
The remaining question, then, is how to determine the

SR Fock exchange fraction, �. To understand the effect of
� on the spectrum, Fig. 2 shows the outer-valence eigen-
values as a function of �, for the example of PTCDA
(similar results for all other molecules are given in the
Supplemental Material [27]). For each choice of �, the
optimal value of �, determined by employing Eq. (2) with
a triple summation, has been used and is also shown.
Several important trends can be distinguished immediately.
First, as � increases, the optimized � value decreases. This
is reasonable: the range above which the exchange is
dominated by its LR contribution roughly corresponds

γ
0.199     0.181      0.160      0.138      0.112     0.083

LUMO

HOMO

FIG. 2 (color online). Eigenvalue energy as a function of the
short-range Fock fraction, �, with the optimal value of the range-
separation parameter, � (Bohr�1) deduced for each choice of �,
for PTCDA. HOMO and LUMO levels are marked. Rectangle
denotes the optimal � value, determined from the minimization
procedure described in the text.
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to 1=�, and the extent of LR Fock corrections should
decrease with increasing SR Fock contributions. Second,
for � between 0 and 0.5, � tuning is successful throughout
in maintaining a HOMO–LUMO gap that is constant to
within �0:05 eV and is in excellent agreement with GW.
Larger � values are not given because for too large �,
determining a corresponding � that obeys Koopmans’
theorem to a meaningful accuracy is no longer possible.
This makes sense because there is a limit to the extent of
SR Fock exchange that can be used while still maintaining
compatibility with a semilocal correlation expression [17].

Third, Fig. 2 clearly exposes the different behavior of the
two types of orbitals present in the outer-valence region.
Eigenvalues corresponding to delocalized orbitals (on
the perylene core) are essentially indifferent to the choice
of � (to within a mean value of 0.2 eV). Conversely, all
anhydride-localized orbitals are highly sensitive to �. As
an example, the doubly degenerate orbital that is
HOMO-1=2 for � ¼ 0 is HOMO-5=6 for � ¼ 0:5, and it
changes in energy from �� 1:5 eV to �� 2:8 eV.
A similar picture emerges for NTCDA. For perylene and
pentacene, all outer-valence orbitals within �3 eV below
the HOMO are delocalized and the spectrum is largely
independent of � (see the Supplemental Material for de-
tails [27]), which explains the success of the SR-exchange-
free OT-�RSH functional for these molecules [Figs. 1(a)
and 1(b)]. Deeper-lying orbitals possess different degrees
of localization, do not exhibit the same level of accuracy,
and are outside the scope of this work.

How to choose an optimal �, then, without empiricism?
Recently, Autschbach and co-workers [46] suggested that
it can be obtained by insisting on an additional property
satisfied by exact DFT, namely, that for ensemble states
described by a fractional number of electrons the total
energy versus particle number curve must be piecewise
linear [44]. They used such tuning for the frontier orbitals
to obtain an accurate CuCl electric field gradient and
optical activity of norbornenone. We stipulate that such
satisfaction of the piecewise linearity constraint is impor-
tant for spectroscopy as well, for two reasons. First, Yang
and co-workers have emphasized the importance of linear
segments for accurate gap prediction [47,48]. Second, en-
forcing piecewise linearity has been shown to be essential
for the accurate spectroscopy of localized states [49,50],
and deviation from this condition is in fact often dubbed a
‘‘many-electron SIE’’ or a ‘‘delocalization error’’ [48,51].

Several groups have already shown that for a well-
constructed RSH functional, curves of the energy as a
functional of the fractional number of electrons, for the
[N � 1,N] and [N,N þ 1] segments, are much more linear
than those obtained with conventional functionals, even
in the absence of optimal tuning [24,39,46,51–53]. We
have performed fractional electron calculations for our
benchmark molecules using NWCHEM [54] with the same
basis set as above. As shown in Fig. 3 using PTCDA as an

example, the above findings apply here as well: whereas
PBE and PBE0 exhibit a notable deviation from linearity,
for an OT-RSH functional the deviation from linearity is
too small to be detected by the naked eye. An alternative
approach to assessing segment linearity, which is more
directly relevant to spectroscopy, is to consider the depen-
dence of the eigenvalues on the fractional number of
electrons [51], as shown in the inset of Fig. 3 for [N � 2,
N þ 1]. If the linear-segment constraint is satisfied, the
HOMO eigenvalue should be constant between integer
electron values, owing to Janak’s theorem [55]. Again,
only the OT-RSH functional obeys this requirement closely
enough. The optimal value of � can thus be obtained by
choosing the � (and therefore the corresponding �) that
minimizes the three curvatures of the �Eð�NÞ curve for
�2< �N � 1. It is found to be 0.2 for both PTCDA and
NTCDA.
Satisfactorily, we find that for both molecules the

orbital ordering for the optimal � value is similar to the
GW ordering (with the exception of the PTCDA HOMO-5
orbital, which is slightly misplaced), without any need for
level shifting: OT-��RSH eigenvalues of PTCDA delo-
calized outer-valence filled states deviate from the same in
GW by�0:18 eV (the largest deviation being 0.25 eV). For
localized states, this deviation is �0:01 eV. For NTCDA,
the average deviation of all outer-valence filled states from
GW is �0:07 eV. These numbers are well within the
accepted accuracy of either calculation. Indeed, the
OT-��RSH spectrum, also shown in Fig. 1, agrees ex-
tremely well with the GW one for both absolute HOMO
and LUMO positions and the top �3 eV portion of quasi-
particle spectrum of filled states for all examined
molecules.

FIG. 3 (color online). Deviation of total energy from that
of the neutral molecule, �E, and HOMO eigenvalue, "HOMO

(inset), as a function of the fractional deviation of the number of
electrons from that of the neutral molecule, �N, computed for
PTCDA using PBE, PBE0, and OT-��RSH (� ¼ 0:2, � ¼
0:160 Bohr�1). The table shows the curvature of each functional,
in eV, obtained from fitting the �Eð�NÞ curve to a second-order
polynomial.
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In conclusion, we have demonstrated, using four
important benchmark molecules, that for outer-valence
excitation energies DFT-based calculations can reach an
accuracy that is comparable to that of GW calculations.
This was achieved by using a PBE-based range-separated
hybrid density functional, with asymptotically exact and
short-range fractional Fock exchange. Importantly, both
range separation and Fock fraction are determined non-
empirically, on the basis of the satisfaction of exact con-
straints for the ionization potential and many-electron
self-interaction error, respectively, resulting in full predic-
tive power for the outer-valence electronic structure. We
envision that the approach could be useful directly as
a low-cost alternative to GW that offers good accuracy
for outer-valence quasiparticle excitation energies.
Additionally, because perturbative ‘‘one-shot’’ G0W0 is
known to be sensitive to the DFT starting point [9,56,57],
our approach provides a novel optimal starting point for
subsequent GW calculations.
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