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We show that a system of hard disks confined to a narrow channel exhibits a fragile-strong fluid

crossover located at the maximum of the isobaric heat capacity and that the relaxation times for different

channel widths fall onto a single master curve when rescaled by the relaxation times and temperatures of

the crossover. Calculations of the configurational entropy and the inherent structure equation of state find

that the crossover is related to properties of the jamming landscape for the model but that the Adam-Gibbs

relation does not predict the relaxation behavior. We also show that a facilitated dynamics description of

the system, where kinetically excited regions are identified with local packing arrangements of the disks,

successfully describes the fragile-strong crossover.
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Upon cooling or compression, many materials, includ-
ing supercooled liquids [1,2], gels, and polymers, form
amorphous glassy solids, where the time needed for the
system to structurally rearrange becomes longer than the
experimental measurement. However, despite the ubiqui-
tous appearance of glasses in nature and science, a com-
prehensive understanding of this glass transition remains
elusive. One useful approach has been to classify glass-
forming liquids on the basis of the temperature dependence
of their structural relaxation times, �, on approach to the
glass transition temperature Tg [3]. In a strong liquid, � is

linear in an Arrhenius plot of ln� vs 1=T, implying struc-
tural relaxation is a simple activated process. Fragile
liquids exhibit super-Arrhenius behavior where � increases
much faster and appears to diverge at positive tempera-
tures. This suggests that relaxation is cooperative and has
led to speculation that there is a thermodynamic ideal glass
transition underlying the kinetic behavior observed in ex-
periment and simulation [1,4].

Silica [5,6], silicon [7], and water [8–11] all appear to go
through a dynamical crossover from a fragile liquid to a
strong liquid at a crossover temperature, T�, that coincides
with the Widom line, marked by a maximum in the heat
capacity. However, a recent analysis [12] of the transport
coefficients of 84 different glass formers shows that the
fragile-strong (FS) crossover occurs more widely than
originally thought and suggests that the crossover tempera-
ture may be more relevant to the general features of dy-
namical arrest than Tg, which is based on an arbitrarily

chosen experimental relaxation time.
In this Letter, we study two contrasting paradigms used

to describe glassy behavior: The first is the inherent struc-
ture landscape (ISL) [13,14] or the density packing land-
scape, which is the hard particle equivalent to the potential
energy landscape [15], and the second is the facilitated
dynamics [16,17] (FD) approach. Both approaches are

shown to capture key elements of the crossover, but we
also find that the local packing arrangements of disks,
which ultimately give rise to the ISL, can be related to
the kinetically excited regions appearing in the FD para-
digm, providing a connection between the two approaches.
Our model consists of N two-dimensional (2D) hard

disks, with diameter �, confined between two hard walls

(lines) of length L separated by a distance 1<Hd=� <

1þ ffiffiffiffiffiffiffiffi
3=4

p
. The particle-particle and particle-wall interac-

tion potentials are given by

Vrij ¼
� 0 rij � �

1 rij < �
: VwðriÞ ¼

�
0 ry � jh0=2j
1 otherwise

;

(1)

respectively, where rij ¼ jrj � rij is the distance between
particles, ry is the component of the position vector for a

particle perpendicular to the wall, and h0 ¼ Hd � �. The
occupied volume is � ¼ N��2=ð4LHdÞ.
The exact partition function [18] and complete jamming

phase diagram [19,20] for the system are known, making it
an ideal tool for exploring the relationships between ther-
modynamics, dynamics, and the ISL. Figure 1 shows the
four locally jammed packing configurations of the disks
that can be combined to give the collectively jammed [21]
inherent structures. The occupied volume fraction of the
jammed states is

�J ¼ �=

�
4Hd½�þ ð1� �Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�HdÞHd

q
�
�
;

where � is the mole fraction of defects (type 2 and 4 bonds).
The most dense jammed state, �Jmax, occurs when � ¼ 0.
The least dense jammed packing occurs when � ¼ 0:5 and
consists of a repeating unit cell of -1-4-3-2- bonds because
placing two defect bonds together (-2-2-, or -4-4-) results in
an unstable configuration. Recent studies of this model
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found that configurations of the ideal gas mapped to jammed
states, �Jig, corresponding to the maximum in the packing

distribution with �ig ¼ 1=2� 51=2=10. The equilibrium

fluid then only samples basins with a higher �J as � is
increased [19,22].

We obtain the exact equation of state (EOS) using the
transfer matrix method developed by Kofke et al. [18]. If
the positions of the disks are fixed in the y direction, the
configurational integral in the x direction can be treated as
a 1D mixture of hard rods on a line. Taking the Laplace
transform gives the partition function in the N, P, T
ensemble as

�ðN;P; TÞ ¼ 1

�DNð�PÞNþ1

Z
dyKNðy; yÞ: (2)

Here, � is the thermal wavelength, P is the longitudinal
pressure, and Kðy1; y2Þ ¼ exp½�Ph0Lxðy1; y2Þ�, with y1
and y2 being the y coordinates of two adjacent disks in
contact. Lx is the projection of the distance between the
two contacting disks along the x axis and is a function
of y1, y2 and h0. Solving the eigenvalue problem
associated with Eq. (2) yields the equation of state for
the fluid in the thermodynamic limit. This gives us access
to the heat capacity given by Cp=Nk ¼ ð@H=@TÞP ¼ 1þ
Z=ð1þ d lnfZg=d lnf�gÞ, where H ¼ NkT þ PV is the
enthalpy in the hard-disks system, Z ¼ PV=NkT is the
compressibility, and V ¼ h0L is the volume accessible to
the disk centers. Figure 2(a) shows that Cp=Nk as a func-

tion of T has a maximum. However, the Cp maximum in

this system results from the binomial density of states and
is not connected to the presence of an underlying critical
point associated with a liquid-liquid phase transition.

Adam and Gibbs [23] argued that the rapid slowdown in
the dynamics of fragile liquids results from the decrease in
accessible configurations at low temperatures or high den-
sities and predicted relaxation times to behave as � ¼
A expðB=TScÞ, where A andB are effectively constant, Sc ¼
k lnðNJÞ is the configurational entropy, andNJ is the number
of inherent structure basins accessible to the equilibrium
fluid. The Adam-Gibbs relation predicts a divergence in �
asNJ ! 1, causing Sc ! 0, and it has been used to describe
the relaxation in a wide variety of materials [24–26].

In our model, the configurational entropy [19] is given by
Scð�Þ=Nk¼ð1��Þlnð1��Þ��ln��ð1�2�Þlnð1�2�Þ,

where the equilibrium value of �ð�Þ can be obtained by
analytically quenching the fluid to its local inherent struc-
ture using the transfer matrix method and the information
about the local geometry of four disks in contact contained
in the chain product matrix Kðyi; ymÞKðym; ynÞKðyn; yjÞ
[22]. Figure 3(a) plots Sc as a function of � and shows
that the rate of configurational entropy loss increases with
increasing� at low densities, but the impending Kauzmann
catastrophe, thought to occur in fragile liquids, is avoided
when Sc goes through an inflection point. Consequently, the
fluid has no ideal glass transition, and Sc only goes to zero in
the limit � ! �Jmax and PV=NkT ! 1. This is the
expected behavior for a system where the distribution of
packings is determined by localized point defects [27]. In
addition, Fig. 2(b) shows that the Cp maxima, for the differ-

ent Hd values, all occur at the same � ¼ 0:044� 0:002,
which suggests it is the number of defects that controls the
thermodynamics associated with the Cp maximum.
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FIG. 2 (color online). Cp=Nk for different values of Hd as a
function of (a) ð�PV=NkTÞ�1 and (b) �.
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FIG. 1 (color online). Local packing arrangements that can be
combined to give collectively jammed states. Dashed lines con-
nect the centers of neighboring disks in contact, and the numbers
identify different ‘‘bonds.’’ Bonds 1 and 3 are the locally most
dense states. Bonds 2 and 4 represent the defect states.
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FIG. 3 (color online). (a) Equilibrium Sc, (b) PIS, and (c) Pvib

as a function of � for different values of Hd.
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To calculate the relaxation times for the system as a
function of �, we use molecular dynamics (MD) simula-

tions where the time, t, has units of �ðm=kTÞ1=2. At any
time during a MD trajectory, an instantaneous configura-
tion can be mapped to its local inherent structure by con-
sidering the position of each disk relative to its two
neighbors and using the triangular constraint, involving
three neighboring disks, introduced by Speedy [24]. If
the central disk lies below the line joining the centers
of the outside disks, the central disk will pack at the bottom
of the channel; otherwise, it will pack at the top. This is
equivalent to the analytical quench used to obtain Sc. Once
the local packing positions have been identified, the bonds
between neighboring disks are assigned their labels, 1–4
(see Fig. 1). The fluid remains within the basin of a single
inherent structure for a short time before a local rearrange-
ment of the disks, which changes the identity of some of
the bonds and moves the system to a new inherent struc-
ture. We measure RðtÞ, the fraction of bonds that have not
changed at least once in time t as a function of t, and define
the relaxation time as � ¼ R1

0 RðtÞdt.
Our simulations were performed using N ¼ 2000 disks

and periodic boundaries in the longitudinal direction. At
each � studied, 400N collisions were used to establish
equilibrium after the system had been compressed from the
previous � using a modified version of the Lubachevsky
and Stillinger algorithm [28] that maintains a fixed ratio of
Hd=�. Simulation lengths varied from 200N collisions at
low densities up to 106N collisions at high densities, and
80 000 configurations were mapped to their inherent struc-
ture at each �. RðtÞ always decays to zero in the time scale
of the measurement, suggesting the system remains a fluid
for all densities considered.

For a hard particle system, �PV is a constant along an
isobar and the Arrhenius law would predict that ln� varies
linearly with �PV=NkT. Figure 4 shows that � increases
more rapidly than the Arrhenius law predicts at low

densities (high T), which suggests the fluid is fragile, but
we see a crossover to strong-fluid behavior at high
densities, where the relaxation times increase linearly.
We also show fits of the data from the fragile region to
the Vogel-Fulcher-Tammann [29–31] (VFT) equation,
� ¼ A exp½B=ðT � TVFTÞ�, which predicts a divergence
of the relaxation times at a temperature TVFT > 0 K, along
with the parabolic law developed by Elmatad, Chandler,
and Garrahan [32,33], which predicts no singularity and is
derived on the basis of the FD models. Both equations fit
well when restricted to fragile fluid data, and the Arrhenius
equation provides the best fit for � above the crossover.
Good fits of the VFT equation to a wide range of experi-
mental and simulation data for supercooled liquids have
been used as evidence for the presence of a thermodynamic
singularity underlying the experimentally observed glass
transition. However, we have already shown that our model
does not exhibit an ideal glass transition, which suggests
that TVFT is simply a fit parameter with no physical sig-
nificance. According to the Adam-Gibbs relation, ln�
should vary linearly with �PV=TSc, but the inset to
Fig. 4 shows that this is not the case here. Sastry et al.
[34] recently found that the Adam-Gibbs relation did not
hold in two dimensions.
The FS crossover occurs at the same � value as that of

the maximum in the Cp for all channel diameters, which is

consistent with the studies that connect the crossover to the
thermodynamics of the Widom line. Furthermore, for each
Hd value we locate the temperature of the Cp maximum

Tmax, using our thermodynamic analysis, and define �0 as
the relaxation time at Tmax. The temperatures and relaxa-
tion times are then rescaled by Tmax and �0 respectively to
give rise to the plot in Fig. 5(a), where all the curves have
collapsed onto a single master curve. Rescaling by any
other temperature, for example, by defining an arbitrary Tg

time scale, fails to collapse the data and leads to the
impression that the systems with different Hd values
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FIG. 4 (color online). Arrhenius plot for the relaxation times
for H ¼ 1:866. The dashed and dashed-dotted lines represent fits
to the data in the fragile region of the parabolic and VFT
equations, respectively. The solid line is the Arrhenius fit to
the strong fluid region. Inset: Adam-Gibbs plot for �.

FIG. 5 (color online). Master curve for the Cp maximum
rescaling of the relaxation times and temperatures for the
Arrhenius plot (a) and the facilitated dynamics model (b). The
solid lines represent linear fits to the strong fluid region.
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have different fragilities. This suggests that Tmax ¼ T�
provides a more useful scaling temperature for our model.

The relationship between the fragility of a fluid and the
ISL has been explored in terms of the number and distri-
bution of inherent structures [25,35], but we can compare
fragile and strong behaviors within the same model. In
particular, we calculate the equivalent of the inherent struc-
ture pressure [36] for a hard particle system directly from
the configurational entropy as PIS ¼ Tð@Sc=@LÞU;h0 , then

use the relation P ¼ PIS þ Pvib and the exact EOS to isolate
the vibrational contribution to the pressure [see Figs. 3(b)
and 3(c)]. PIS makes a significant contribution to the overall
pressure in the fragile fluid and reflects the fact that the
configurational entropy of the system is varying rapidly as a
function of density in the fragile fluid. However, PIS then
goes through a maximum at a density slightly higher than
that of the Cp maximum and rapidly decreases. The EOS of

the strong fluid is entirely dominated by the vibrational
component of the system rattling around the local jamming
point of the inherent structures being sampled. This is
consistent with experimental findings [37] that show strong
behavior is dominated by density effects and local jamming
whereas fragile relaxation is more thermally activated.

The facilitated dynamics paradigm suggests that relaxa-
tion and particle motion is driven by local microscopic
dynamical rules rather than any underlying thermodynam-
ics [17]. A key ingredient of FD is the presence of kineti-
cally mobile regions that are able to influence the motion of
neighboring regions, leading to the formation of chains of
mobile particles in space-time. In addition, the theory
argues that directed particle motion plays an important
role. If a kinetically mobile region can activate or deacti-
vate a neighboring region independent of any previous
motion, it is considered to be directionally independent.
Then the system behaves like a strong fluid and ln� �
� lnCFD, where CFD is the concentration of kinetically
excited regions. The expectation that structural relaxation
in a fragile fluid is cooperative is captured by having
directional correlation between the successive movement
of particles in the kinetically excited regions. A FS cross-
over is predicted to occur when elements of both mecha-
nisms are present in the system. While FD models have
been parametrized to fit experimental data, only recently
have there been efforts to identify the kinetically excited
regions at a microscopic level [38–40], and most studies of
FD have focused on spin models where the dynamic rules
are included by construction.

In the current model, we are able to identify these
kinetically excited regions as the defects states (2, 4 bonds)
in the jammed configurations. Relaxation in the system
occurs in three ways: (A) A particle next to an isolated
defect can hop into the defect, causing the defect to move.
This occurs with equal probability in both directions and
leads to strong fluid behavior. (B) Two neighboring defects
moving toward each other create a local configuration with

bonds -1-4-4-3- or -3-2-2-1- that is unjammed, leading to a
spontaneous collapse of the central disk and an annihila-
tion of the defects to form a -1-3-1-3- locally jammed state.
It is the spontaneity of the particle rearrangements associ-
ated with the defect annihilation, following the initial
particle hop that brings the defects together, that is char-
acteristic of the cooperative relaxation in a fragile fluid.
(C) A nondefect state can create two neighboring defects
that move apart. The equilibrium number of kinetically
excited regions in the system is then just CFD ¼ �ð�Þ,
which we obtained from our analytical quench of the
system. At low densities, there is a high concentration of
defects that can interact, and the directed creation-
annihilation mechanisms dominate, giving rise to a fragile
fluid that crosses over to a strong fluid as CFD decreases
below its critical value. Figure 5(b) shows that ln�=�0
becomes a linear function of � lnðC1

FD=CFDÞ, where C1
FD

is the number of defects in inherent structures of the ideal
gas, �ig, highlighting the strong fluid behavior at low CFD

(high densities). The figure also shows that the relaxation
times for this model collapse to a single master curve when
rescaled by �0, which on the basis of Fig. 2(b) is equivalent
to rescaling by the relaxation time of the system containing
the critical number of defects associated with the crossover.
Our work suggests that the local packing environments

of particles, along with the way they interact, may serve as
the important microscopic ingredients in the FD paradigm
and points to a new analysis that can be explored in higher
dimensions. In the case of hard particles, it may be useful
to identify local packing structures or local tilings in the
jammed inherent structures [41] as defects. In more com-
plex liquids, such as silica and water, the local geometry of
a particle is dominated by the formation of a random
tetrahedral network (RTN) of bonds. A recent study [10]
of the dynamics in the ST2 model of water [42], both above
and below T�, showed that the temperature dependence of
the diffusion coefficient could be explained in terms of the
concentration of local defects in the RTN. Similar results
have been found in models of colloids [43] and nanopar-
ticle systems [44] with highly directional tetrahedral bond-
ing. It is still not known if the movement of particles in
relation to the RTN defects can be described by the FD
model, but these studies, along with ours, strongly suggest
local packing and particle geometries may play an impor-
tant role in the dynamics of fluids in general.
We thank WestGrid for providing computational resour-

ces and NSERC for financial support.
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