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The dynamics of the ion structure in warm dense matter is determined by molecular dynamics

simulations using an effective ion-ion potential. This potential is obtained from ab initio simulations

and has a strong short-range repulsion added to a screened Coulomb potential. Models based on static or

dynamic local field corrections are found to be insufficient to describe the data. An extended Mermin

approach, a hydrodynamic model, and the method of moments with local constraints are capable of

reproducing the numerical results but have rather limited predictive powers as they all need some

numerical data as input. The method of moments is found to be the most promising.
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The dynamic ion structure factor Siiðk;!Þ (DISF) of
dense plasmas and warm dense matter (WDM) is of great
importance as it contains the complete information on the
ions in these strongly interacting systems and is also influ-
enced by the electron properties. It is closely related to the
density response function and, thus, determines many re-
laxation and transport properties, e.g., stopping power and
electron-ion temperature equilibration, and even the equa-
tion of state [1–3]. The DISF may also be used for the
diagnostics of extreme states of matter like WDM by
means of x-ray Thomson scattering [4–9].

Ab initio simulations have been successfully applied to
describe the properties of WDM including the equation of
state and x-ray scattering cross sections [8–11]. However, the
calculation of the DISF would require an unrealistic compu-
tational effort when using first principle methods. Thus, most
efforts on the DISF were focused on model systems such as
the one-component plasma (OCP) model, using bare
Coulomb interactions, or the Yukawa model, considering
screened Coulomb potentials [12–16]. Both models treat
ions with an effective charge state but otherwise neglect the
effects of bound electrons. In dense matter, full shells of
bound electrons can, however, modify the effective ion-ion
interactions and lead to significant changes in the static
structure factor [17,18]. Consequently, it can be expected
that the simple OCP and Yukawa models yield insufficient
information on DISFs for most WDM systems created
experimentally.

To study the spectrum of ion acoustic modes in WDM
more realistically, we apply a significantly improved ion-
ion interaction in molecular dynamics (MD) simulations.
This effective potential has been extracted from density
functional molecular dynamics simulations considering all
electrons [18]. This first principle method fully meets the
requirements to model WDM as it considers the quantum
behavior of the electrons and strong forces between the
ions. The resulting effective ion-ion potential can be

described as being of Yukawa type with added short-range
repulsion (Yukawa+SRR). It can be reproduced excellently
by the following form:

Veff
ii ðrÞ ¼

�
Z2
1e

2

r
þ ðZ2

c � Z2
1Þe2

r
e�br

�
e��r: (1)

Z1 is the charge state of the ion and Zc its nuclear charge.
The parameter b determines the onset of the strong short-
range repulsion. For large distances, Eq. (1) coincides with
the Yukawa potential (first term) but it is much more
repulsive for close encounters. In contrast to the Yukawa
model, the Yukawaþ SRR potential (1) yields the static
ion structure in very good agreement with first principle
simulations of WDM [17,18].
In this Letter, we investigate the dynamic properties of

the ion subsystem based on the effective potential (1) as it
captures the complex interactions in WDM. For all ex-
amples, we employ the parameters of an experiment with
shocked silicon [19]. Thus, we have Z1 ¼ 4, Zc ¼ 14,
ne ¼ 5:36� 1023 cm�3, and T ¼ 54540 K, which results

in � ¼ 1:277a�1
B and d ¼ ð3=4�niÞ1=3 ¼ 2:291aB for the

inverse screening length and the interparticle distance,
respectively. aB is the Bohr radius. The classical coupling
parameter for these parameters is � ¼ 40:4. Fitting the
effective potential (1) to results from the density functional
theory yields b ¼ 0:7a�1

B for the switching parameter.
In our MD simulations, we follow the dynamics of the

ions by integrating their equations of motion (using a
velocity-Verlet integrator) while accounting for the pair-
wise interaction of the particles. The relatively strong
screening allows us to use a cutoff radius (Rc ¼ 5:12d)
and to limit the summation of interparticle forces to neigh-
bors within a sphere having a radius Rc where efficient
finding of these neighbors is aided by the chaining mesh
technique. Our simulations use N ¼ 4000 particles and a
cubic simulation box with periodic boundary conditions.
The dynamic structure factor is calculated for a series
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of wave numbers that are multiples of ðkdÞmin ¼ 0:2455.
We have carried out 30 simulation runs, each comprising
221 time steps, and average the data obtained from these
data sets.

Figure 1 shows our results for the DISF applying the
effective ion-ion potential (1) and compares these data to
the DISF for a Yukawa system. Because of the modified
interactions, the ion acoustic peaks are upshifted, which
marks the difference in sound speed. In addition, the height
and width of the ion acoustic peaks are changed dramati-
cally and the diffusive peak at ! ¼ 0 is strongly reduced.
These differences show that partial ionization in WDM,
modeled by the potential (1), can significantly change the
ion dynamics.

To gain additional insights into the ion dynamics, we test
a number of analytical models against the MD data. First
we consider local field corrections (LFC) that are based on
the static ion structure. Then, we employ methods with one
or more free parameters that allow us to fit the numerical
data.

Local field corrections are introduced by connecting the
DISF and the ion density response function [3]

Siiðk;!Þ ¼ � kBT

�!
Im�iiðk;!Þ; (2)

where the latter is expressed as [20]

�iiðk;!Þ ¼ �0
i ðk!Þ
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Here, �0
i ðk;!Þ is the ideal gas response andGiiðk;!Þ is the,

generally dynamic, local field correction.
We apply two models for static local field corrections.

The first uses the spectral representation of the density
response function in the limit ! ! 0 [3]

Giiðk; 0Þ ¼ 1� kBT
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Similarly, the sum rule of the third frequency moment can
be exploited in the high frequency limit [21]. For the
potential (1) considered here, one obtains
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Here, a ¼ f1; cg, �1 ¼ � is the normal screening length
depending on the electron properties and �c ¼ �þ b.
Dynamic local field corrections can be derived using the

method of recurrence relations [22,23]. The result is a
smooth interpolation between the two static local field
corrections at ! ¼ 0 and ! ¼ 1 presented above

Giiðk;!Þ ¼ Giiðk; 0Þ þ �2Qðk;!Þ; (7)

�2 ¼ � 1

2
½Giiðk; 0Þ �Giiðk;1Þ�; (8)
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i ðk; 0Þ
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The function Qðk;!Þ switches between the two limiting
static LFCs where we defined �0

1 ¼ k2kBT=mi.

Figure 2 shows that all LFC methods reproduce the
numerical DISF very poorly. Neither location, height,
width, nor the diffusive peak agree with the MD data for
this moderately coupled system. Further analysis of this
fact is presented in Fig. 3. Here, the dispersion relation and
the width (full width at half maximum—FWHM) of the ion
acoustic peak is shown over a range of wave vectors. The
static LFC (! ¼ 0) reproduces the location of the ion
acoustic mode reasonably well, but the FWHM is almost
an order of magnitude too small. Therefore, one has to
acknowledge the failure of LFC methods to reproduce the
dynamic ion structure in WDM for arbitrary parameters of
coupling and wave vectors.
To overcome these shortcomings of the LFC methods,

we follow three alternative approaches:
(1) Recently the extended Mermin approach was intro-

duced by Fortmann et al. It combines the Mermin ansatz
for the dielectric function with the formalism of LFCs to
describe both strong correlations and collisions [24]. For
the density response function follows
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FIG. 1 (color online). DISF for the effective ion-ion potential
(1) compared to the one for a Yukawa system. Both results are
obtained by MD for the example of shocked silicon [19].
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�LFC
ii ðk;!Þ contain LFCs as in Eq. (3) and the collision

frequency �ð!Þ can be calculated, e.g., in the Born ap-
proximation [24,25]. However, this approach is usually
used for systems with Coulomb interactions. In our case,
the effective ion-ion potential introduces some of the phys-
ics usually included in the dynamic collision frequency.
The collision frequency here describes ion-ion and
electron-ion correlations beyond the ion LFCs used earlier.
An identification in terms of the usual Born or T-matrix
electron-ion collision frequencies seems difficult if not
impossible. For this reason, we have chosen to use the
static collision frequency � as an adjustment parameter.
Moreover, it is found that collision frequencies with iden-
tical real and imaginary parts give the best agreement with
the MD data for most cases in this paper.

(2) Within themethod of moments with local constraints,
the density response function is expanded in the space
of frequency moments S�ðkÞ ¼ n�1

i

Rþ1
�1 d!!�Siiðk;!Þ

[26,27]. This method has the large advantage that an
arbitrary number of sum rules for the response function
is satisfied exactly. For the DISF, we have

�

ni
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¼ SiiðkÞ!2
1�2Im�ðk;!Þ

½!�2þ�1Re�ðk;!Þ�2þ½�1Im�ðk;!Þ�2 (11)

with �j ¼ !2 �!2
j . The characteristic frequencies !j are

defined by the moments of the DISF: !2
1 ¼ S2ðkÞ=S0ðkÞ

and !2
2 ¼ S4ðkÞ=S2ðkÞ. The zeroth moment is the static

structure factor S0ðkÞ ¼ SiiðkÞ, the second moment is the
f-sum rule, and the fourth moment is related to Gðk;1Þ
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The Nevanlinna function �ðk;!Þ contains all higher order
correlations and can be related to the dynamic LFC of
Eq. (7) [26]. This function, chosen from a certain mathe-
matical class, does not influence the fulfilment of the sum
rules. In the simplest approximation, the Nevanlinna func-
tion is purely imaginary and static

�ðkÞ ¼ i

�
¼ i

niSiiðkÞ!2
pl�

0ðkÞ
�Siiðk; 0Þ!2

1

: (13)

Here, �0ðkÞ ¼ ð!2
2 �!2

1Þ=!2
pl with the plasma frequency

!2
pl ¼ 4�Z2

1e
2ni=mi. A better approximation for �ðk;!Þ

can be obtained via the Schur algorithm within the
Nevanlinna pick problem involving a Hilbert transform
of the DISF at one or more points in an optimization
procedure [26,27]. This formalism also creates a real part
of the Nevanlinna function �ðkÞ ¼ Re�ðkÞ þ iIm�ðkÞ. For
our purpose of reproducing the numerical data for the
DISF, we find that a one-point constraint, carefully chosen
from the set of MD data, is sufficient.
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FIG. 2 (color online). DISF obtained with MD simulations and
from theories applying different LFCs for the effective potential
(1) and a wave number kd ¼ 0:2455. Bottom panel: LFC enter-
ing the calculations for the respective DISF.
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(3) The hydrodynamic model was used quite success-
fully to reproduce the DISF for OCP and Yukawa systems
[16,28]. Within this approach, the DISF is expressed in
terms of the static structure SiiðkÞ, the sound speed cs, the
thermal diffusivityDT , the sound attenuation coefficient	,
and the ratio of specific heats 


Siiðk;!Þ
SiiðkÞ ¼ 
� 1




2DTk
2

!2 þ ðDTk
2Þ2

þ 1




�
	k2

ð!þ cskÞ2 þ 	2k4

þ 	k2

ð!� cskÞ2 þ 	2k4

�
: (14)

Using all of these methods, extendedMermin, method of
moments with local constraints, and the hydrodynamic fit,
it is possible to obtain a reasonable agreement with the MD
data, both for the dispersion relation and the actual spectral
form of the ion acoustic peak (see Fig. 4). Of course, this
success comes at the price of introducing free fit parame-
ters. In case of the hydrodynamic model, there are four
independent parameters and the extended Mermin
approach uses two: the real and imaginary parts of the
collision frequency. The method of moments can repro-
duce the MD data very well by using just one local con-
straint, that is, a point chosen from the MD data. As the
hydrodynamic model is strictly valid for small wave vec-
tors only and the collision frequency, used here as a fit

parameter, lacks physical meaning, the method of
moments is our preferred model.
As shown in Fig. 4, the ion acoustic mode is reproduced

well by the three methods above. However, there is a
consistent problem of all tested methods to describe the
diffusive peak near! ¼ 0 correctly. To determine whether
this discrepancy was due to numerical bias, we evaluated
the static structure factor, the f-sum rule, and the fourth
moment of the DISF from MD simulations and the ana-
lytical approaches. For all wave vectors analyzed here, we
found less than 1% and less than 5% deviations for the
f-sum rule and the fourth moment sum rule, respectively.
All static properties entering the analytic models are thus
highly accurate, making the failure to describe the diffu-
sive peak even more remarkable. However, this deficit is
mitigated by the fact that most of the spectral weight is
contained in the ion acoustic mode for small wave vectors.
Thus, the diffusive mode constitutes only a small contri-
bution to the ion dynamics.
In conclusion, we have demonstrated that the complex

interactions in WDM significantly modify the dynamics of
the ions. Whereas LFC cannot reproduce the DISF from
MD simulations, theories with few free parameters are
sufficient. Overall, we prefer the method of moments to
describe the DISF. It is not restricted to small wave vectors
and conserves all known exact sum rules.
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