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A new nondissipative mechanism is proposed for the saturation of the axisymmetric magnetorotational

(MRI) instability in thin Keplerian disks that are subject to an axial magnetic field. That mechanism relies

on the energy transfer from the MRI to stable magnetosonic waves. Such mode interaction is enabled due

to the vertical stratification of the disk that results in the discretization of its MRI spectrum, as well as by

applying the appropriate boundary conditions. A second order Duffing-like amplitude equation for the

initially unstable MRI modes is derived. The solutions of that equation exhibit bursty nonlinear

oscillations with a constant amplitude that signifies the saturation level of the MRI. Those results are

verified by a direct numerical solution of the full nonlinear reduced set of thin disk magnetohydrody-

namics equations.
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Introduction.—The destabilizing effect of an axial mag-
netic field on the Couette flow was discovered half a
century ago [1,2]. However, the importance of that phe-
nomenon to astrophysics was recognized only three deca-
des later by Balbus and Hawley [3,4]. That mechanism,
termed the magnetorotational instability (MRI), is indeed
considered by many researchers as the main candidate to
hold the key to solving the problem of angular momentum
transfer in accretion disks and has been thoroughly inves-
tigated through linear analysis as well as nonlinear mag-
netohydrodynamic (MHD) simulations under a wide range
of conditions and applications. Because of its importance
in accretion disks physics the understanding of the MRI’s
saturation mechanisms and level is of utmost significance.
Thus, Knobloch and Julien [5] have described analytically
the nonlinear saturation of the MRI in a straight infinite
vertically uniform channel with solid boundaries. Such a
configuration is characteristic of laboratory experiments
rather than astrophysical conditions. Knobloch and Julien
considered a developed stage of the MRI, far from its
threshold, and showed that as the presence of the solid
boundaries supports radial pressure gradients, the latter act
together with the viscous as well as Ohmic dissipation in
order to modify the rotation shear that feeds the instability
and thus saturates it. In a complementary work, Umurhan
et al. [6] performed a weakly nonlinear analysis of the MRI
close to marginality in configurations similar to Ref. [5]
and showed that the MRI saturates due to dissipative
effects to levels that scale with the square root of the
magnetic Prandtl number. In this Letter a novel mechanism

for the saturation of the MRI is proposed that differs from
the above two works in the following important two
aspects: (1) A true thin disk is considered that is charac-
terized by vertically localized stratified mass density, sub-
ject to radiation boundary conditions, and (2) the proposed
mechanism is nondissipative. Indeed, it is shown that the
nonlinear forcing of magnetosonic (MS) waves by the MRI
results in the saturation of the latter and leads to bursty
nonlinear oscillation of its amplitude.
The physical model.—The thin disk asymptotic expan-

sion procedure is applied to the MHD equations in order to
study the weakly nonlinear evolution of the MRI. The
underlying physical property of the system is the super-
sonic nature of the Keplerian rotation whose Mach number
is proportional to 1=�, where � is the ratio of the disk’s
semithickness to its characteristic radius. Consequently,
both steady-state as well as the perturbed variables are
scaled with well defined powers of the small parameter
�. Such a procedure has been employed in numerous
studies of thin disk dynamics, [7–11] and has, in particular,
been proven efficient in the realistic analysis of the discrete
MRI spectrum in true thin disk geometry [12]. Thus, the
steady-state configuration is characterized by a Keplerian

rotation�ðrÞ ¼ r�3=2 where�ðrÞ and r are normalized by
the value of the rotation frequency at some radius R0, and
R0, respectively, as well as by an axial magnetic field BzðrÞ
that is an arbitrary function of r. The axial steady-state
structure of the disk is determined from the force balance
between the thermal pressure and the gravitational pull of
the central object. Thus assuming axially isothermal
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configuration results in the following normalized number

density profile: nðr; �Þ ¼ NðrÞ�ð�Þ, where �ð�Þ¼e��2=2,
NðrÞ is an arbitrary function of r, � ¼ �=HðrÞ, � ¼ z=� is
the stretched axial coordinate, and HðrÞ is the semithick-
ness of the disk. The latter [or alternatively the temperature
profile TðrÞ] is an arbitrary function of r.

As the axial variations of the perturbations are assumed
to occur on much smaller length scales than the corre-
sponding radial changes, to lowest order the MHD equa-
tions are given by the following set of reduced nonlinear
equations that depend parametrically on the radial coordi-
nate (see Ref. [12] for detailed derivation):
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where time is scaled with the local inverse rotation fre-
quency; �, (vr, v�, vz), and (br, b�, bz) are the perturbed
number density [scaled by NðrÞ], the components of the
perturbed velocity [scaled by the sound velocity, CsðrÞ],
and magnetic field [scaled by the steady-state axial mag-
netic field, BzðrÞ�, respectively. In addition, the local
plasma beta is given by �ðrÞ ¼ �0NðrÞC2

sðrÞ=B2
zðrÞ where

�0 is the beta value at R0, and CsðrÞ is proportional to the
square root of the temperature.

Small perturbations.—Linearizing the system of
Eqs. (1)–(6), the latter decouples into two subsystems:
the first one is obtained from Eqs. (1)–(4) and describes
the evolution of two Alfvén-Coriolis waves, one of which
is responsible for the MRI. The second subsystem is
obtained from Eqs. (5) and (6) and describes the MS
modes. Liverts and Mond [13] obtained a WKB solution
for the MRI eigenvalues and eigenfunctions for Gaussian
stratified disks. However, modifying the steady-state num-

ber density axial profile to ��ð�Þ ¼ sech2� enables the
analytical solution of both subsystems. Assuming that
the perturbations evolve as ei�t, the eigenfunctions of the
Alfvén-Coriolis subsystem can be expressed in terms of

the Legendre polynomials that lead to the following dis-
persion relation [12]:

ð3�k
cr � �2�Þ½3�k

cr � ð3þ �2Þ�� � 4�2�2 ¼ 0; (7)

where �k
cr ¼ kðkþ 1Þ=3, k ¼ 1; 2; . . . . As can be inferred

from Eq. (7), due to the axial stratification of the steady-
state configuration the unstable modes are quantized with
the axial number k, which is equivalent to the axial wave
number for the axially uniform case. Of particular interest
is the fact that the number of unstable MRI modes
increases with �, the threshold for exciting k unstable
modes being �k

cr. Figure 1 depicts the emergence of
more and more unstable modes as � is increased. It is
further noticed that each point on the � axis with � ¼ �k

cr,
k ¼ 1; 2; . . . serves as a bifurcation point for two modes,
namely, an unstable MRI one with þ� and a stable mode
with ��. Consequently, at the bifurcation points the ei-
genvalue � is zero with multiplicity 2. This fact will turn
out to be of great significance in the weakly nonlinear
analysis to be unfolded in the next sections.
Turning to the MS subsystem, its spectrum is stable and

continuous. The eigenfunctions may be expressed as linear
combinations of the following pair of linearly independent

functions [14]: f�¼½ð1�	Þ=ð1þ	Þ��
=2ð
�	Þ, where
	 ¼ tanh�, and
 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
. It can be easily proven that

solutions that vanish at 	 ¼ �1 exist only for �2 > 0,
which indeed renders the MS modes stable.
Weakly nonlinear analysis.—The focus is put now on the

portion of the � axis that is only slightly above �1
cr ¼ 2=3.

As can be seen from Fig. 1, which depicts the solution of
Eq. (7) for the first MRI modes, in that range of values
there is only one such mode, namely, for k ¼ 1. Defining
the control parameter � � 1 as � ¼ �1

c þ �, the growth
rate of the single unstable MRI mode may be calculated to
lowest order in � from Eq. (7) to be �2 ¼ 27�=14. The
expression for the eigenfunction of, say, the radial compo-
nent of the perturbed magnetic field of that initially small
MRI perturbation looks, therefore, as follows [14]:

0 1 2 3 4 5 6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

β

γ

k=1
2

3

FIG. 1 (color online). The bifurcation diagram for MRI modes
for k ¼ 1, 2, 3 as a function of �. Each MRI branch that is
characterized by a mode number k is accompanied by a stable
branch that is symmetric about the vertical axis.
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brðr; �; tÞ ¼ b0ðrÞ½P0ð	Þ � 	P1ð	Þ�aðtÞ; (8)

where aðtÞ ¼ a0e
�ð�Þt, Pk is the Legendre polynomial of

order k, k ¼ 0, 1, 	 ¼ tanh�, b0 is an arbitrary function of
r, and a0 is the amplitude of the initial perturbation.

The amplitude a of the growing MRI remains exponen-
tial as long as the perturbation is small enough. However,
as the perturbation grows exponentially, nonlinear effects
kick in. Thus, it is clear from Eqs. (5) and (6) that the
pressure exerted by the perturbed magnetic field excites the
MS modes which in turn alters the stability properties of
the original MRI mode by affecting its axial convection as
well as by modifying the Alfvén velocity. As a result of that
interaction of the growing MRI with the excited MS mode,
the amplitude of the former is no longer exponential but
becomes a different function of time. The aim of the
weakly nonlinear analysis is therefore to derive an appro-
priate ordinary differential equation that describes the
evolution in time of the amplitude aðtÞ of the single MRI
mode. In order to do that it is recalled that the transition to
instability (when � reaches �1

cr from below) occurs when
the linearized system of equations has a double zero ei-
genvalue. As a result, the sought after equation is expected
to be of second order as opposed to first order equations
that characterize systems that bifurcate to instability
through a simple zero eigenvalue [15]. Thus, the appro-
priate amplitude equation is of the following form:

d2a

dt2
¼ �2a� �a3: (9)

Equation (9) has been derived directly from Eqs. (1)–(6) by
suitable asymptotic analysis. However, for the sake of
brevity of the current presentation, � is determined below
from the parameters that characterize the steady state.
Equation (9) has also been used by Arter [16] in order to
describe sawtooth oscillation in Tokamaks. The role of
double eigenvalues has also been recognized by Stefani
and Gerbeth [17] in order to study polarity reversals in
mean-field dynamo models.

In order to calculate � it is first noticed that Eq. (9)
shares two important features with the full set of the
reduced nonlinear Eqs. (1)–(6): (1) For � < 0 the origin
of the phase space (i.e., the a� da=dt plane) is the only
fixed point of the dynamical system described by Eq. (9).
This is a reflection of the fact that for � < 0 the only
steady-state solution of the set (1)–(6) is the original basic
Keplerian rotation. (2) For � > 0 the single fixed point at
the origin turns into a saddle point while two additional
fixed points emerge that are centers and are located in
symmetrically opposite locations with respect to the origin.
The latter occur due to nonlinear effects and are given by
dac=dt ¼ 0, a2c ¼ �2=�. This kind of behavior, once
again, reflects the fact that once the MRI grows exponen-
tially, the nonlinear terms give rise to a new stable steady
state that may be calculated through Eqs. (1)–(6). Having
that in mind, a clear strategy emerges for calculating the

value of �, namely, by the amplitude of the nonlinear
steady state solution of Eqs. (1)–(6).
The nonlinear steady state.—The first steady-state solu-

tion of the set of Eqs. (1)–(6) is obviously given by setting
all the physical variables to zero. That solution describes
the original basic Keplerian flow without any perturba-
tions. However, as the beta value protrudes into the un-
stable region in parameter space, an additional perturbed
steady-state solution emerges. Finding that nonlinear
steady state starts by realizing that bns� ð	Þ ¼ vns

r ð	Þ ¼
vns
z ð	Þ ¼ 0, where the superscript ns denotes the nonlinear

steady-state solution. Consequently, the following single
ordinary differential equation is derived for the radial
component of the steady-state magnetic field:
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d	2
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(10)

where, as written above, � ¼ �1
cr þ � with �1

cr ¼ 2=3. An
asymptotic solution of Eq. (10) in the limit of small posi-
tive � is now obtained by expanding bnsr in the following

power series in
ffiffiffiffi
�

p
(or alternatively in powers series in �):

bnsr ð	Þ ¼ ffiffiffiffi
�

p
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�
p Þ3
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ð3Þ
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To lowest order in
ffiffiffiffi
�

p
the solution is given by the right-

hand side of Eq. (8), exactly as the first linear eigenfunc-
tion. The coefficient 
1 is determined now by the
solvability condition of the resulting inhomogeneous equa-

tion for bð3Þr ð	Þ. Applying for that purpose Fredholm’s

alternative theorem yields 
1 ¼
ffiffiffiffiffiffiffiffi
5=2

p
. Recalling now

that the center fixed point of the dynamical system
described by Eq. (9) is given by a2c ¼ �2=�, and that ac
is identified with

ffiffiffiffi
�

p

1, the value of � is readily computed

to be � ¼ 2�2=5�.
Results.—Equation (9) is known in the literature as the

undamped Duffing equation and its solutions may be
expressed analytically in terms of the Jacobi elliptic func-
tions. Of particular importance is the fact that that kind
of Duffing equation is derivable from an Hamiltonian
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FIG. 2 (color online). Comparison between brð� ¼ 0; tÞ as
obtained from Eqs. (1)–(6) (solid line), and the solution of
Eq. (9) (dashed line), both for � ¼ 0:0052.
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and hence its solutions are bounded. This reflects indeed
the saturation of the MRI. For initial conditions near the
saddle point at the origin of the phase plane the period
of the bursty oscillations is asymptotically given by
� ! lnð8=hÞ=2� as h ! 0, where h ¼ �ð _a2 � �2a2 þ
a4=2Þt¼t0=4�

2. Consequently, a small change in the initial

conditions may dramatically change the period of the non-
linear oscillations without affecting in a significant way
their amplitude.

Figure 2 depicts a comparison between brð� ¼ 0; tÞ as
obtained from the solution of the full nonlinear reduced
set of MHD Eqs. (1)–(6) (solid line), and the solution of
Eq. (9) (dashed line), both for � ¼ 0:0052. For that value
of � the growth rate is � ¼ 0:1. Thus, even though � � 1
the characteristic time for saturation is quite realistic at�7
orbital periods. The two solutions practically overlap dur-
ing the first few periods of the nonlinear oscillations. The
phase difference between the two solutions is noticeable
only later on due to the accumulating effect of a slight
difference in the period. The latter, as has been discussed
above, depends on and is very sensitive to the initial
conditions. The amplitude of the nonlinear oscillations,
which signifies the saturation level of the MRI, is the
same for both calculations for the entire calculation time.
The growth immediately after each minimum value corre-
sponds to exponential growth with the corresponding �
value, i.e., 0.1. As a demonstration of the mode interaction
mechanism that results in the saturation of the MRI, Fig. 3
depicts the perturbation in the number density at the equa-
torial plane, as obtained from the solution of Eqs. (1)–(6)
for � ¼ 0:0052. The periodic energy transfer from the
unstable MRI k ¼ 1 mode to the corresponding driven
MS wave is indeed apparent.

Conclusions.—A novel nondissipative mechanism for
the saturation of the MRI has been proposed by which
the latter drives nonresonantly MS waves in a bursty
oscillatory manner. A second order Duffing equation is
derived for the amplitude of the MRI. The cubic term in
that equation reflects the saturation mechanism in which
the driven MS waves modify the plasma beta in a periodic

way. Since the system is only slightly supercritical, due to
that modification the average modified plasma beta oscil-
lates above and below the instability threshold and thus
instigates the observed bursty nonlinear oscillations.
Analytical solutions of the proposed Duffing equation
coincide with the solutions obtained from the numerical
simulations of the reduced nonlinear MHD thin disk equa-
tions. Furthermore, the same dynamical behavior repeats
itself near all threshold points �k

cr, while numerical simu-
lations indicate that the bursty oscillations persist also far
away from �1

cr [14]. Therefore, the new saturation mecha-
nism presented in the current work imposes severe limita-
tions on the efficiency of the MRI to directly generate
significant levels of turbulence in thin accretion disks.
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FIG. 3 (color online). The amplitude of the perturbed number
density in the equatorial plane, i.e., �ð� ¼ 0; tÞ, as obtained
from Eqs. (1)–(6) for � ¼ 0:0052.
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