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We investigate the collective optomechanics of an ensemble of scatterers inside a Fabry-Pérot resonator
and identify an optimized configuration where the ensemble is transmissive, in contrast to the usual
reflective optomechanics approach. In this configuration, the optomechanical coupling of a specific
collective mechanical mode can be several orders of magnitude larger than the single-element case, and
long-range interactions can be generated between the different elements since light permeates throughout
the array. This new regime should realistically allow for achieving strong single-photon optomechanical
coupling with massive resonators, realizing hybrid quantum interfaces, and exploiting collective long-
range interactions in arrays of atoms or mechanical oscillators.
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The field of optomechanics has made tremendous
progress over the past decades [1], cooling of massive me-
chanical oscillators to the motional quantum ground state
being but one of a series of achievements that demonstrate
the power of coupling light to moving scatterers [2,3].
The control of mechanical motion in the quantum regime
has many important applications, ranging from precision
measurements [4], quantum information processing [5],
and fundamental tests of quantum mechanics [6], to the
photonics sciences [7]. Despite recent progress the coupling
between a single photon and a single phonon remains typi-
cally very weak, therefore necessitating the use of many
photons to amplify the interaction [1,8]. In this regime,
which is useful for cooling and light-motion entanglement
generation, a stronger coupling per photon is desirable to
limit the negative effects of using large powers, e.g., bulk
temperature increases or phase-noise heating [9]. Ultimately,
reaching the strong (single-photon) coupling regime, in
which a single quantum of light can appreciably affect the
motion of the mechanical oscillator, is essential to exploiting
fully the quantum nature of the optomechanical interaction,
as exhibited by such effects as the optomechanical photon
blockade [10] and non-Gaussian mechanical states [11].

Among the various approaches currently followed to
couple mechanical oscillators with optical resonators, a
successful one involves positioning reflecting objects—
dielectric membranes [12,13], atoms [14], or microspheres
[15]—inside an optical cavity. With dielectric membranes
the optomechanical interaction strength saturates to a fun-
damental limit g as the reflectivity of the membrane
approaches unity [12]. For a highly reflective membrane
placed near the center of a Fabry-Pérot (FP) resonator of
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length L and resonance frequency w, the single-photon
coupling strength is given by the shift in cavity frequency
when the mirror moves through a distance equal to the
spread x of its zero-point fluctuations, g = 2wx,/L, and
is typically rather weak for a macroscopic cavity [12].
Several approaches can be followed to improve quantum
motional control in single membrane systems, by, e.g.,
tailoring of the optical and mechanical properties of the
individual membranes [16], using photothermal cooling
forces [17], active thermal noise compensation [18], optical
trapping [19] techniques, or coupling to cold atoms [20].

Another promising approach consists in exploiting col-
lective optomechanical interactions using microscopic
ensembles of cold atoms [14] or arrays of macroscopic
mechanical oscillators [21-24]. In the former the optome-
chanical coupling strength usually scales as N'/? with the
number N of atoms, and the weakly coupled atomic systems
are said to demonstrate infinitely long-ranged interactions
[14]. In the latter, one can confine the light in periodic
structures at the wavelength scale. In this vein, e.g., opto-
mechanical crystals [25] have proven to be very successful
at obtaining large coupling strengths by decreasing the
length of the effective cavity [2,26]. However, interactions
between distant elements in arrays of massive scatterers are
believed to be strongly suppressed [24].

Here we provide a unifying formalism that shows these
two systems as limiting cases of a more generic model for
an array of scatterers in a FP cavity. This allows us to
identify an optimized configuration for the scatterers that is
transmissive instead of the typical reflective approach.
We base our treatment on the observation that around a
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transmission point of the mechanical system, the cavity
response to a certain collective mechanical oscillation can
be greatly enhanced. This is to be seen as an alternative to
the traditional approach that requires smaller cavities (on
the order of a few wavelengths [25]) to increase the field
density of modes and thus the coupling between light and
mechanics. Our analysis reveals a regime where, regardless
of whether the scatterers are atoms or mobile dielectrics,
the coupling strength (i) scales superlinearly (oc N3/2) with
the number of scatterers and (ii) does not saturate as the
reflectivity of the elements approaches unity. This allows, in
principle, multielement opto- or electromechanical systems
to reach single-photon optomechanical coupling strengths
orders of magnitude larger than those currently possible, and
does not require wavelength-scale confinement of the light
field. Concomitantly, we show that in this configuration
(iii) the resonator field couples to a specific collective
mechanical mode supporting interelement interactions
that are as long ranged as the array itself. Since the model
is applicable both to mobile dielectrics, such as membranes
[12] or microspheres [15], and to cold atoms in an optical
lattice [27,28], this new regime should realistically allow
for achieving strong single-photon optomechanical cou-
pling and realizing quantum optomechanical interfaces. It
also opens up avenues for the exploitation and engineering
of long-ranged cooperative interactions in optomechanical
arrays.

Let us again consider a lossless membrane, of thickness
smaller than a wavelength, placed inside a FP resonator.
This time, we suppose that the membrane has an amplitude
reflectivity r, which we parametrize in terms of the polar-

izability / = —|r|/4/1 — |r?|. The single-photon optome-
chanical coupling strength is now g, = glr|, which is
maximized to g for large |Z], i.e., in the reflective regime
|r] — 1. In order to illustrate the emergence of collective
optomechanics, we now consider two identical membranes
placed symmetrically in the resonator at a distance d from
each other, in the spirit of Fig. 1(a) and Ref. [22]. As we
justify below, the effective polarizability of the two-element
system is found to be of the form y = 2{[cos(kd) —
¢ sin(kd)] for light having wave number k (wavelength A).
This effective polarizability, and thereby the reflectivity,
vanishes when d is chosen such that kd = tan"'(1/()
mod 7. Assuming this transmissive condition, one can
linearize the cavity resonance condition for a small varia-
tion 6d of the mirror spacing. This readily gives an opto-
mechanical coupling strength

Sw |7
I = | !~ -
8= |5q |0 = Y2e 707 (1)

provided d|{|*> < L, where x}, = xo/ V2 is the extent of the
zero-point motion for this breathing mode. It is evident that
g4 scales more favorably with |r| than g,. One can interpret
this result by noting that, as the reflectivity of the individual
elements is increased, the constructive interference that is
responsible for making the array transmissive also strongly
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FIG. 1 (color online). Schematic of model, motional modes,
and working points. (a) System considered: N equidistant ele-
ments positioned in the field of a Fabry-Pérot resonator (we shall
consider only the case for which L >> Nd). (b) Two examples of
collective motional modes: the center-of-mass mode and an
example of a “breathing” mode. (c) Free-space reflectivity of
a five-element array as a function of the element spacing d; the
curve is periodic with period A/2. The intensity reflectivity of
each element is 20% (dotted green line).

enhances the dispersive response of the cavity around this
working point. In a symmetric situation the displacement of
a mirror in one direction will cause the field to adjust so that
the other mirror moves in the opposite direction, thereby
balancing the power impinging on the two mirrors. In this
simple two-element case, the radiation-pressure force thus
couples naturally to a breathing mode [Fig. 1(b)].

Optical “superscatterers.”—To treat the general case of
an array of N equally spaced elements in free space we
make use of the transfer matrix formalism [29] for one-
dimensional systems of polarizable scatterers, and derive
the response of the system to a propagating light field. As is
well known from the theory of dielectric mirrors, the
reflectivity of the ensemble can be tuned to have markedly
different behaviors at a given frequency [Fig. 1(c)]. An
array of N equally spaced identical elements, each of
polarizability ¢, can be described through a matrix that
relates left- and right-propagating fields on either side of the
array [30]. For real {, N lossless scatterers behave as a

collective superscatterer having effective polarizability y =
{sin[Ncos ™ '(a)]/V/1 — a?, with a = cos(kd) — ¢ sin(kd),
together with a phase shift u, which is the phase accrued
on reflection from the stack. The ensemble attains its
largest reflectivity for kd = kdy = —tan"'({), x = xo =
—isin[Ncos™'(y/1 + £?)], and becomes fully transmissive
(x=0) for kd=kd.= —tan () = cos™'[(1 +
{2)~1/2 cos(/N)]. For absorbing scatterers, setting d =
d_ (modulo A/2) helps minimize the effects of absorption
[30]. These working points are illustrated in Fig. 1(c).
From this point onwards, the array can be treated as a
single scatterer, keeping in mind the dependence of y on
the interelement spacing.

Ensemble coupling strength.—When placed inside a
cavity, at first neglecting any motion, this array of

223601-2



PRL 109, 223601 (2012)

PHYSICAL REVIEW LETTERS

week ending
30 NOVEMBER 2012

scatterers modifies the resonance condition, such that the
resonances of the system are given by the solutions to [30]
e M
1+iy

where x is the displacement of the ensemble with respect to
the cavity center, and u = u(x, x,,...) and y =
X(xy, x,, ...) depend on the positions x; of the individual
elements. For a particular configuration, Eq. (2) is solved
numerically to find the resonance frequency w = kc.
A small shift dx; in the position of the jth element in the
array shifts this resonance: @ — @ — g;8x;. The vector
(g;) defines the profile of the collective motional mode that
is coupled to the cavity field. In the case of a transmissive
ensemble, the intensity profile peaks at the center of the
array [Fig. 1(a)]. The optomechanical coupling strength g;
for the jth membrane is strongest where the difference in
amplitudes across the membrane is greatest, j = (N + 2)/4
or (3N + 2)/4, resulting in g; oc sin[7(2j — 1)/N] and a
mechanical mode whose profile varies sinusoidally along
the array. In Fig. 2 we plot the transmission of the cavity
(T ) [30] as a function of frequency and the displace-
ment of this sinusoidal mode. The dashed lines represent
solutions to Eq. (2), i.e., in the absence of membrane
motion, and are one free-spectral range apart. The gradient
of the bright curves at any point is a direct measure of the
optomechanical coupling strength for the sinusoidal mode
at that point. The center of the plot corresponds to our
working point; the adjacent optical resonances are to a
good approximation one bare-cavity free-spectral range
apart. In the situations we consider here, we have checked
that the linear coupling largely dominates over the qua-
dratic coupling [30].

Generically, one obtains the linear optomechanical cou-
pling strength by linearizing Eq. (2) about one of its
solutions. For a center-of-mass motion [cf. Fig. 1(b)] in

okl —

[iycos(2kx) = /1 + ¥*sin?(2kx)],  (2)

the reflective regime, d = d,, we thus obtain g., =
gJR /N, where R = x3/(1 + x3) is the maximal inten-
sity reflectivity of the ensemble. As N or { increase, R
saturates to 1 and g, scales as N~'/2, This scaling can be
explained simply by noting that the motional mass m, of N
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FIG. 2 (color online). Transmission through a cavity with five
immobile elements. The dashed lines denote the unperturbed
resonances, which are shifted when the displacement of the
sinusoidal mode, a type of breathing mode [Fig. 1(b)] that is
defined in the text, is nonzero. ({ = —0.5, L = 6.3 X 10*]A,
d = d_, bare cavity finesse = 3 X 10%).

elements is N times that of a single one; the single-photon
coupling strength, which is proportional to 1/,/my, there-
fore decreases with N.

In the transmissive regime, d = d_ (modulo A/2), then,
the cavity field couples to the sinusoidal mode with a
collective coupling strength (for large N [30])

Zepnr 3

o mb5 N NS 32
8sin [+ 247N 7TgKN , €)]
the last expression being valid for L/d > 2{°N>/x>.
Optimizing over N for arbitrary L/d, we obtain
g;’f’; = 3g+/L/d|{| [31]. This favorable scaling with both
N and |r|, as shown in Fig. 3, is a significant improvement
over the state of the art. Close inspection reveals that g;’ip[f is
proportional to 1/ VLd and therefore can be improved either
by making the main cavity smaller (i.e., decreasing L) or,
independently, by positioning the elements closer together
(decreasing d). The effect we describe is therefore qualita-
tively different from constructing a smaller cavity having
dimensions on the order of A [26], and also provides a
practical route towards integrating strongly coupled opto-
mechanical systems with, e.g., ensembles of atoms in the
same cavity [20].

An interesting effect arises in the regime where g,
saturates and eventually starts decreasing as a function of
N; the scatterers then act to narrow the cavity resonance
substantially. This arises from an effective lengthening of
the cavity, due to the presence of the array, to a length
Loy = L + 2 d{*N°. Since the cavity finesse in the trans-
missive regime is fixed by the end mirrors, it follows that
the linewidth of the cavity is k. oc 1/L. (bare cavity
linewidth «, oc 1/L), which has possible applications in
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FIG. 3 (color online). Coupling strengths for multielement
arrays. These curves are scaled to g = 27 X 15 Hz (dotted
green line), which is the upper bound for the reflective case.
Top: Scaling with N of the normalized coupling strength for the
sinusoidal ( & N3/?) and center-of-mass ( « N~/2) modes, as
illustrated by the dotted curves. ({ = —0.5, L = 6.3 X 10*),
d=d_ +20A.) Bottom: Optimized sinusoidal coupling g;’ip;
compared to the coupling for N = 2, demonstrating the collec-
tively enhanced coupling strength, and to gq. (d = d_).
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hybrid systems along the same lines as those of electro-
magnetically induced transparency in Ref. [32]. When using
low-finesse cavities and low mechanical oscillation frequen-
cies, this effect could be used to place the system well within
the sideband-resolved regime. As shown in Fig. 4, g, and
K. compete to give rise to a constant cooperativity
g% /(KoL gee) for large N (1/T 4. is the mechanical deco-
herence time scale, assumed independent of N [30]). In the
presence of absorption, which ultimately limits the line-
width narrowing, there exists an optimum number of ele-
ments which maximizes the cooperativity to a value that
can still be several orders of magnitude larger than the
single-element cooperativity.

Long-range collective interactions.—The collective
nature of the interaction that is responsible for these large
coupling strengths also gives rise to an effective ‘“‘non-
local” interaction between the scatterers, where the motion
of any particular element greatly influences elements far-
ther away, and not just its nearest neighbors. In the simplest
picture of a weak linearized optomechanical interaction [1]
in which the field is adiabatically eliminated, the interac-
tion Hamiltonian is proportional to 3}, ;818%/%;, and medi-
ates a macroscopically long-ranged effective interaction
between pairs of elements (position operators £; and ;).
By contrast, in the reflective regime the light does not
permeate through the ensemble, and the interelement me-
chanical interactions would therefore be correspondingly
short ranged (see, for example, Ref. [24]). Transmissive
arrays with well-designed spacings and polarizabilities
could be used to engineer specific optomechanical inter-
actions and gain insight into collective optomechanics
phenomena [23,24].

Numerical example, tolerance to imperfections.—The
power of this approach to optomechanics is best seen
through a numerical illustration. If we take commercial
silicon nitride membranes [12] with an intensity

T T T T T T 10%

—
)
>

;
“//‘:::::;eeo.OOO
o

L oo 4100

,_
T
=)

4 10‘2

—
|
©

Linewidth, normalized to k.

Normalized cooperativity

1 1 1 104

Number of membranes, N
I n n 1 1 1 1 1 1 101

2 4 6 8 10 12 14 16 18 20
Number of membranes, N

Coupling strength, normalized to ¢

,_
)

FIG. 4 (color online). Effective cavity linewidth k. (dia-
monds) and optomechanical coupling strength g, (cf. Fig. 3,
circles) as a function of the number of membranes. Inset:
Cooperativity g% /(. gc) normalized to the single-element
cooperativity g2/(k.I4e); the non-normalized cooperativity can
reach values >10 (see text). Closed symbols represent absorption-
free membranes, open symbols an absorption of 1073 per mem-
brane. (99.4% reflectivity, d = d_ + 10A, L =~ 6.3 X 10*]A, bare
cavity finesse = 3 X 10%))

reflectivity of 20% ({ = —0.5) and xy = 1.8 fm, and a
cavity with L = 6.7 cm and a wavelength of 1064 nm,
we can estimate g., =~ 27 X (12.8 X N~'/2 Hz) for
N = 3. For the sinusoidal mode, and with the same pa-
rameters, gg, =~ 27 X (1.3 X N¥2 Hz) for large N, an
improvement by over an order of magnitude when
N =10 (cf. Fig. 3). A transparent ensemble potentially
provides a much stronger optomechanical coupling than a
reflective one; indeed gy, /8. * N>. Let us now consider
highly reflective membranes [16] having 99.4% intensity
reflectivity ({ = —12.9), xy,=27fm, and o, =
27 X 211 kHz. For a 0.25 cm-long cavity with finesse F =
1.2 X 10°, d = d_, and N = 5 membranes, one obtains
Zem = 27 X 600 Hz and g, = 27 X 270 kHz, which is
larger than both w,, and k. = 27 X 250 kHz. At a tem-
perature of 1 K and with a mechanical quality factor of 10°
the single-photon cooperativity is ca. 14 for this system;
strong coupling between a single photon and a single
phonon is already within reach with only a few elements.
A thorough numerical investigation [30] reveals that our
results are robust with respect to various experimentally
relevant deviations from the idealized system considered
here, such as the errors in the positioning of the individual
membranes and nonuniform membrane reflectivity or
absorption. For example, for N =5 and { = —0.5, the
numerically calculated coupling strength typically lies
within 12% of the above value for position fluctuations
of =10 nm, inhomogeneities in ¢ of =10%, and absorp-
tion per element of = 1073,

Moving away from highly reflective scatterers, we can
apply our results to systems of very low reflectivity, such as
atoms, molecules, dielectric microspheres, etc. It should
first be noted that all these systems have a reflectivity on
the order of 107°, which means that N|/| < 1 in typical
experiments (for example, with cold atoms in cavities
[14]); i.e., the particles do not significantly modify the
mode structure of the cavity resonance. In this case gg,
reduces to the expected N'/2 scaling that arises from the
independent coupling of well-localized scatterers interact-
ing with an unmodified cavity field [14]. We note, however,
that recent experiments [28] using ‘‘pancake-shaped”
clouds of cold atoms in an optical lattice have shown
intensity reflectivities as high as 80% and are approaching
a regime where the effects discussed previously may be
observed.

Conclusions.—We have made use of a fully analytical
theory to explore novel interactions between the collective
mechanical dynamics of an array of equidistant scatterers
inside a cavity and the cavity field itself. Our ideas apply
generically across a wide range of systems; any system that
can be modeled as a one-dimensional chain of scatterers
(e.g., membranes, atoms [28], optomechanical crystals [2],
or dielectric microspheres [15]) is amenable to a similar
analysis and shows the same rich physics. Similar methods
would allow the extension of these ideas to more compli-
cated systems where the polarizability is a function of
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frequency or of position along the array, or systems involv-
ing the interaction of arrays of refractive elements with
multiple optical modes.
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