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A Zeeman-insensitive optical clock atomic transition is engineered when nuclear spins are dressed by

a nonresonant radio-frequency field. For fermionic species as 87Sr, 171Yb, and 199Hg, particular ratios

between the radio-frequency driving amplitude and frequency lead to ‘‘magic’’ magnetic values where a

net cancelation of the Zeeman clock shift and a complete reduction of first-order magnetic variations are

produced within a relative uncertainty below the 10�18 level. An Autler-Townes continued fraction

describing a semiclassical radio-frequency dressed spin is numerically computed and compared to an

analytical quantum description including higher-order magnetic field corrections to the dressed energies.

DOI: 10.1103/PhysRevLett.109.223003 PACS numbers: 32.80.Qk, 06.30.Ft, 32.60.+i, 32.70.Jz

The interaction between magnetic fields and the nuclear
or electronic magnetic moments represents a flexible
tool for the control of the internal and external degrees of
freedom in atoms or molecules, widely employed in pre-
cision measurements, frequency metrology, and coherent
manipulations of quantum systems. In frequency metrol-
ogy, the presence of magnetic fields may represent a limit
on the realization of specific targets. In the attractive
context of the ‘‘magic’’ wavelength combining a vanishing
differential shift of the clock levels with the Lamb-Dicke
regime greatly reducing the motional effects [1–3], the
quest for magic magnetic field values where first-order
Zeeman shift and magnetic fluctuation of the atomic tran-
sition are annulled, was proposed in Ref. [4] and studied
experimentally in rubidium [5]. The best performances in
optical clocks are accessible by using atomic transitions
allowed by a weak hyperfine mixing mediated through a
small spin-orbit coupling with a resolution at the millihertz
level. To obtain even better performances, it has been
proposed to use the bosonic even isotopes eliminating
the nuclear spin and removing completely the first-order
Zeeman effect with a residual second-order magnetic shift
comparable to those of the ion standards [6]. However,
in order to get rid of strong cold collision frequency
shifts associated to the bosons, the present frequency
metrology is concentrated on the fermionic species, such
as 87Sr [7–10], 171Yb [11,12], and 199Hg [13,14]. There, the
first- and second-order Zeeman shifts contribute by 1 order
of magnitude above the projected 10�18 fractional uncer-
tainty of the frequency standard [7,9,10].

This Letter focuses on the atomic magnetic moment
engineering with the target of getting rid of atomic
properties sensitive to external electromagnetic fields.
A scheme based on the radio-frequency (rf) quantum
engineering of fermionic atomic states is presented in order
to produce levels experiencing a vanishing first-order

Zeeman clock shift. The cancelation of the first-order
Zeeman shift applies also to the vectorial ac Stark shift,
equivalent to an effective magnetic field, the only contri-
bution of this kind appearing in 171Yb and 199Hg. The basic
idea of letting a paramagnetic system mimic a nonmag-
netic one originates from artificial or synthetic magnetism,
where an atomic Hamiltonian is created by proper electro-
magnetic fields in order to simulate a given magnetic
configuration [15]. Our work is inspired by the dressed-
atom rf quantum engineering [16], where the paramagnetic
response for two species, atoms in Ref. [17] or atom or
neutron in Ref. [18], is tuned into the resonance.
The cancelation of the first-order Zeeman effect is pro-

duced by the atomic dressing at a rf frequency much larger
than the effective Larmor precession, equivalent to a fre-
quency modulation of the nuclear magnetization and a
shielded nuclear response to the static magnetic field. The
different rf response for the ground and excited states of the
clock transition leads to crossing nodes in the energy dia-
gram, where the atoms become nonmagnetic. This change
from a paramagnetic system to an nonmagnetic one shares a
strong analogy with a Landau theory of phase transition. In
addition, atmagic static field values the rf dressing engineers
a Zeeman-insensitive atomic clock. This magic cancelation
arises from the nonlinear magnetic Hamiltonian associated
to the rf dressing of the two-electron system. Even if the
dressing does not eliminate the second-order Zeeman con-
tribution, its contribution to clock state separation is strongly
decreased by an operation at a magic magnetic field. The
stability of the ratio between rf dressing amplitude and rf
angular frequency required to produce a target nonmagnetic
state matched to the aimed optical clock accuracy is experi-
mentally reachable. The present approach of a magic mag-
netic field cannot be applied to tensorial ac shifts.
For the alkali-earth atoms, a modified Breit-Wills theory

describes the action of a magnetic field B producing linear
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and quadratic nuclear spin-dependent Zeeman shifts for the
doubly forbidden j1S0i ! j3P0i optical clock transition

[19]. For the jF;mFi Zeeman level, the energy EmF
is

EP;mF0 ð3P0Þ ¼ mF0gP�BBþ�ð2Þ
B B2;

ES;mF
ð1S0Þ ¼ mFgS�BB;

(1)

where m0
F and mF are the upper and lower magnetic

quantum numbers, respectively, gP and gS the Landé g

factors, with gP ¼ gS þ �g, and �ð2Þ
B the second-order

Zeeman contribution, mF independent. We will focus our
attention on fermionic systems spin polarized in the
extreme Zeeman sublevels [19,20], where a systematic
average on the transition frequencies of optical transitions
symmetrically placed around the line center is currently
applied to cancel the linear Zeeman shift and to probe
accurately the second-order Zeeman correction. Their
parameters are listed in the Supplemental Material [21].
The Zeeman energies of the highest jmFj 87Sr clock levels
versus B are plotted in Fig. 1(a).

We drive the clock atoms by a nonresonant rf field,
linearly polarized and orthogonal to B, at angular fre-
quency !rf and (ground-state) Rabi frequency �; see
Supplemental Material [21]. A strong modification of the
Landé g factor occurs in the regime where �BB � @!rf .
For dressing by a large number of rf photons, a perturbative
quantum analysis predicts a dressed Landé g factor depen-
dent on the zeroth-order Bessel function of the first
kind gdj ðxjÞ ¼ gjJ0ðxjÞ, with xj ¼ �j=!rf , �j ¼ gj�=gS
(j ¼ P, S) [22]. That dependence was verified in experi-
ments on atoms [17,18,23], neutrons [24], and a chromium
Bose-Einstein condensate [25]. It is valid for whatever spin
value and equally spaced Zeeman levels [26]. When
�BB � @!rf , the gdj expression includes an additional B

dependence given by [26,27]

gdj ¼ gj

�
J0ðxjÞ �

�
gj�BB

@!rf

�
2
SðxjÞ

�
; (2)

SðxÞ being a product of Bessel functions. However, for
the first two crossing nodes of the rf dressed Zeeman
energies of Fig. 1(b), the following approximated analyti-
cal SðxÞ expression given by Ref. [28] provides the
required accuracy:

SðxÞ¼ 16

2025x4
½�ðxÞJ2ðxÞþ�ðxÞJ4ðxÞ��ðxÞJ6ðxÞ�; (3)

where functions are �ðxÞ ¼ 75ð5x2 � x4=4Þ, �ðxÞ¼
6ð408�74x2�23x4=16Þ, and �ðxÞ¼145ð3x2�x4=2Þ=49.
When the dressed Landé g factor of Eq. (2) is substituted
into the energies of Eq. (1), the rf dressed energies contain
both B2 and B3 nonlinear terms.
We derive the exact rf dressed Zeeman energies Ed

mF
ðjÞ

from the Autler-Townes continued fraction

Ed
mF
ðjÞ ¼ EmF

ðjÞ þmF@
�

2

gj
gS

� LðjÞ: (4)

The function L, representing the m ¼ 1=2 dressed energy,
normalized to the Rabi frequency [22], for a spin-1=2
system having !21 energy splitting and rf dressed by a
!rf field with Rabi frequency �, is given by [29]

L ¼ 1

Lþ 4!21

� ð1� !rf

!21
Þ � 1

L�8
!21
�

!rf
!21

� 1
Lþ���

þ 1

Lþ 4!21

� ð1þ !rf

!21
Þ � 1

Lþ8
!21
�

!rf
!21

� 1
Lþ���

: (5)

The dressed nuclear Landé g factor is obtained by deriving
the dressed energies with respect to B. Evaluation of
dressed energies is done by retaining only a sufficient
number of the quotients in each continued fraction needed
to reach the desired accuracy. In practice, nine quotients
are necessary.
The dressing field strongly modifies the Zeeman ener-

gies for each mF clock state as shown in Fig. 1(b) for a

FIG. 1 (color online). (a) Bare Zeeman energy splitting EmF

of the 87Sr j1S0;mF ¼ �9=2i and j3P0;mF ¼ �9=2i clock

states versus magnetic field B. (b) Dressed Zeeman energies
Ed
mF

(3P0,
3S0) versus x ¼ �=!rf at !=2� ¼ 2 kHz and

B ¼ 25 �T. The crossing nodes with a zero first-order
Zeeman shift determine the magic rf values.
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given static field B. The energies follow mainly the zero-
order Bessel function dependence. The different 1S0 and
3P0 sensitivity to the dressing created by �g produces

several crossings between the clock energies at particular
�=!rf ratios. The dressed Zeeman clock shift

�Ed
mF!m0

F
¼ Ed

m0
F
ð3P0Þ � Ed

mF
ð1S0Þ (6)

is exactly compensated for by specific rf dressing parameters,
for instance, in Fig. 2(a) at the x ¼ �=!rf � 0:96;
3:11; 5:44; . . . for a � transition. The !rf and� compensat-
ing values are determined by imposing the clock transition to
be immune from the Zeeman shift, i.e., equal dressed mag-
netic energies.

A more ambitious target is to derive the magic fields
where the pure-Zeeman differential shift is zero and also
independent of the field value. That applies to the dressed
Zeeman clock shift plotted in Fig. 2(a) with oscillations in
the B dependence. At !rf=2� ¼ 2 kHz and �=!rf ¼
0:963874 we have a magic magnetic field value Bm �
2:1 �T which exactly cancels the full Zeeman shift for
the mF ¼ �9=2, � transition, experiencing in addition a
reduced ðB� BmÞ2 sensitivity for the Zeeman energies.
A reduction by 1 order of magnitude for that second-order
sensitivity is obtained by operating close to the higher-
order crossing nodes of Fig. 1(b), the first two also shown
in Fig. 2(a) and corresponding to alternating mF ¼ �9=2
and mF ¼ 9=2 Zeeman sublevels. Figure 2(b) shows that,
by changing the x parameter, a perfect cancelation of the
ðB� BmÞ2 magnetic sensitivity is reached, at the expense
of a clock constant bias.
The magic (Bm, xm) values where the Zeeman shift

and the first-order sensitivity to weak field variations are
simultaneously canceled are derived by imposing

�Ed
mF!mF0 ðxÞ ¼ 0;

�@�Ed
mF!mF0

@B

�
x
¼ 0: (7)

The continued fraction solution of Eqs. (4) and (5) deter-
mines the magic values associated to the above conditions.
Figure 3 reports the graphical approach applied to derive
these magic Bm values. Notice that a suppression cannot
be realized simultaneously for more than one mF spin-
dependent transition, because the B square dependence of
Eq. (2) imposes for each optical transition a matched
dressed g-factor compensation.

FIG. 2 (color online). 87Sr dressed Zeeman shifts of the �
clock transition (mF ¼ �9=2 or mF ¼ 9=2) versus B for
!rf=2� ¼ 2 kHz and the �=!rf values at, or around, the cross-
ing nodes in Fig. 1. The curvature around the B values of the shift
minima is the dressed second-order Zeeman shift. For the
(b) open red data, the x is modified by one part in 106 from
the crossing value to a value where the second-order Zeeman
shift is annulled, in the presence of constant Zeeman bias. Open
and closed dots are based on Eqs. (4) and (5), respectively. Lines
based on Eqs. (2) and (3) are approximated solutions providing a
good description around the first two crossing nodes only.
10 �Hz corresponds to a 2� 10�20 clock fractional shift.

FIG. 3 (color online). (B, x) branches, derived from Eq. (7),
defining a zero clock Zeeman shift �Ed ¼ 0 (thick solid red
line) and a zero derivative @�Ed=@B ¼ 0 (dashed blue line) for
the alternating mF ¼ �9=2 and mF ¼ 9=2 � clock transitions in
87Sr. Their intersections determine the (Bm, xm) magic values
also denoted by the solid dots from a numerical evaluation of
Eqs. (4) and (5). The thin solid black line dependence reports the
BðxÞ of Eq. (8), but magic Bm values occur only at magic xm
parameters. All curves are for !rf=2� ¼ 2 kHz.
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As a good approximation, calculating the dressed ener-
gies through the effective Landé g factor of Eq. (2) we get
the following expression of the magic Bm field as a func-
tion of the !rf and xm parameters:

Bmð!rf ; xmÞ ¼ @
3!2

rf�
ð2Þ
B =ð2�3

BÞ
mF0g3PS

�
gP
gS
xm

�
�mFg

3
SSðxmÞ

: (8)

Table I reports at fixed !rf few magic pairs (xm, Bm), at
increasing Bm values, for the � polarization atomic clock
of the fermionic species of present interest. The !rf=2� ¼
2 kHz choice, producing a consistent table for all the
fermionic atoms, leads to very small magic field values
for the mercury atom. Higher values, more easily manage-
able in the laboratory, are simply obtained by increasing
the rf frequency and applying the Eq. (8) scaling. The
accuracy of the dressed energy and the magic pairs
strongly depends on the atomic parameters as tested by a
numerical evaluation of the continued fraction. A complete
‘‘full-scale’’ calculation as reported in Refs. [4,30] would
be required for accurate magic numerical values including
all the digits recommended for a correct evaluation. To
highlight the resolution which should be targeted for can-
celing the Zeeman shifts below the 10�19 level, we have
used a six-digit resolution for figures when necessary.

The magic field values are calculated at a fixed �=!rf

value that implies a very large precision in the setting of the
� and !rf parameters. For a practical application, the
stability of those quantities becomes an important issue.
While a very high stability of the rf frequency is not a
problem, the � accuracy could be an issue. We have

explored the � stability required in the operation of an
optical clock, and the results are reported in Fig. 4.
A change in �, or precisely a change in x by one part in
ten thousand, corresponds to a fractional shift of the optical
clock at the 10�17 level. In order to reach the ultimate limit
of the alkali-earth optical clocks [1], because only the x
ratio of the rf quantities is important for the rf engineering,
the � variations may be compensated for by acting on the
rf frequency. Thus, a feedback on the rf frequency should
reach the required ratio stability, in order to reach a 10�20

TABLE I. Magic (xm, Bm) pairs for � and �� 87Sr, 171Yb, and 199Hg optical clock transitions
based on Eqs. (4) and (5), at fixed !rf=2� ¼ 2 kHz. The xm ¼ �m=!rf values are reported here
with the experimental accuracy of the Landé factor, but a fractional shift below 10�19 requires a
six-digit resolution.

87Sr
mF ! mF0 � 9

2 ! � 9
2 þ 9

2 ! þ 9
2 � 9

2 ! � 9
2 þ 9

2 ! þ 9
2

xm 0.9639 3.111 5.444 7.777

Bm (�T) 2.1 5.1 9.0 20.0

171Yb
mF ! mF0 þ 1

2 ! þ 1
2 � 1

2 ! � 1
2 þ 1

2 ! þ 1
2 � 1

2 ! � 1
2

xm 0.9776 3.157 5.527 7.906

Bm (�T) 0.08 0.12 0.33 0.68

mF ! mF0 � 1
2 ! þ 1

2 þ 1
2 ! � 1

2 � 1
2 ! þ 1

2 þ 1
2 ! � 1

2

xm 1.826 4.107 5.543 6.954

Bm (�T) 0.11 0.59 0.88 0.82

199Hg

mF ! mF0 þ 1
2 ! þ 1

2 � 1
2 ! � 1

2 þ 1
2 ! þ 1

2 � 1
2 ! � 1

2

xm 0.9115 2.931 5.117 7.221

Bm (�T) 0.02 0.05 0.11 0.34

mF ! mF0 � 1
2 ! þ 1

2 þ 1
2 ! � 1

2 � 1
2 ! þ 1

2 þ 1
2 ! � 1

2

xm 1.674 3.599 4.566 6.388

Bm (�T) 0.04 0.19 0.17 0.16

FIG. 4 (color online). Fractional clock shift, measured in
10�20 relative units, for the 87Sr mF ¼ �9=2 � transition, for
a rf amplitude fluctuation by 0.01% (left scale) and for correlated
variations of the same amount applied to both amplitude and rf
frequency (right scale). Operating point xrf ¼ 0:96 . . . and
!rf=2� ¼ 2 kHz, leading to the magic B ¼ 2:1 �T value.

PRL 109, 223003 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

30 NOVEMBER 2012

223003-4



level in Fig. 4. In practice, the rf stability could be matched
to the actual accuracy of the optical clock. For large !rf

excursions, the efficiency of this compensation is limited
by the !2

rf dependence in the Bm numerator of Eq. (8).

We have verified that the shift produced by virtual
transitions induced by the rf field between the 3P fine
structure levels is negligible compared to the finally aimed
clock accuracy. The presence of vectorial ac shift contri-
bution to the atomic energies introduces an additional shift
of the clock levels. When the ac shift is comparable to the
Zeeman shift, the key features of the rf dressing, crossing
nodes, compensations of the clock shift, and magic values,
are obtained also for this case, with magic (xm, Bm) pairs
depending on the specific ac shift. Schemes for the rf
compensation of the ac tensorial part appearing in the
87Sr optical clock only should be investigated.

The combination of well-engineered optical-trapping
potential and of rf quantum engineering represents an
important tool in the investigation of alkali-earth clock
systematics. We have verified our scheme feasibility within
the operation regime of the present optical clocks. The
averaging over the Zeeman components of the optical
clock transition is directly performed by the rf dressing
of the atomic system. For an implementation within an
optical lattice where magnetic fields are created syntheti-
cally [15], the dressing magnetic field may be originated by
the rf modulation of the lattice depth, at least for frequen-
cies low enough for an atomic adiabatic following.

The synthetic rf controlled magnetism may be applied to
other atomic or molecular and solid-state physics configu-
rations. Besides compensating the residual Zeeman con-
tribution to a superstable optical clock based on a nuclear
transition [31], the rf engineering may be applied to design
an artificial quantum transition with specific Zeeman prop-
erties, as a two-level superconducting system driven by an
oscillatory field [32], and to the control of spin coherent
dynamics and transport in semiconductor systems [33,34].
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