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In condensed matter, it is often difficult to untangle the effects of competing interactions, and this is

especially problematic for superconductors. Quantum simulators may help: here we show how exploiting

the properties of highly excited Rydberg states of cold fermionic atoms in a bilayer lattice can simulate

electron-phonon interactions in the presence of strong correlation—a scenario found in many unconven-

tional superconductors. We discuss the core features of the simulator, and use numerics to compare with

condensed matter analogues. Finally, we illustrate how to achieve a practical, tunable implementation of

the simulation using ‘‘painted spot’’ potentials.
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Cold atom quantum simulators offer an important new
approach to the study of correlated electron phenomena
without the limitations of computational or analytical tech-
niques. For example, cold atoms have recently been used as
quantum simulators to investigate models of condensed
matter such as the Hubbard model of strong local
Coulomb repulsion, which is important for the understand-
ing of cuprate superconductors [1,2]. This has led to direct
observation of important phenomena such as the superfluid
to Mott insulator transition [3,4].

Besides the cuprates, there are several superconductors
with high transition temperatures, many of which have
important roles for electron-phonon interactions, and
repulsion driven correlated electron phenomena such as
antiferromagnetism. Fulleride superconductors of the fam-
ily A3C60 have phonon driven transition temperatures [5]
of up to 40 K [6], but also exhibit antiferromagnetism at
appropriate dopings and structures [7]. Superconductivity
in bismuthates with TC > 30 K [8] is probably due to
strong couplings of localized electrons to the lattice [9]
(as evidenced by a large isotope shift [10,11]). High tran-
sition temperatures have also been achieved in the boro-
carbides [12,13] (TC ¼ 23 K) and chloronitrides [14]
(TC ¼ 25 K). The more conventional layered MgB2 and
graphite intercalation compounds are also interesting.
Even the cuprate superconductors, where superconductiv-
ity is thought by many to be driven by anti-ferromagnetic
fluctuations [15], show isotope shifts [16] and other effects
such as kinks [17] that may be attributed to a nontrivial
interplay between strong correlations and lattice
vibrations.

Owing to the importance of electron-phonon interac-
tions in condensed matter, reliable numerical methods
have been sought, but even very simplified models [18]
are extremely hard to simulate. Simulations either have to
deal with the potentially infinite number of phonons asso-
ciated with even a single electron, or retardation effects if
the phonons are integrated out. A key problem in many
advanced materials is that electrons are localized to atomic

orbitals and accordingly the Fermi energy is small. This
localization means that dimensionless electron-phonon
couplings are relatively strong and phonon frequencies
can be large at around 10% of the Fermi energy. Even
moderate couplings with intermediate frequency phonons
can lead to consequences that cannot be predicted with
perturbation theory and other analytics. Such couplings
can cause additional difficulties for numerics, that are often
most efficient in the extreme limits of weak or strong
coupling. Recent advances in continuous time quantum
Monte Carlo (CTQMC) cluster impurity solvers for dy-
namical mean field theories offer a state of the art for
numerical simulations of Hubbard and Holstein models
(for a review, see Ref. [19]). Such simulations are currently
limited to�36 site clusters for Hubbard models and 12 site
clusters for Holstein models, limiting the range of spatial
fluctuations that can be simulated in 2D to a few sites.
Quantum simulation of lattice effects has proved diffi-

cult to implement. The existence of quantum simulators
with a high degree of control over the form of interactions
has the potential to provide significant insight into the
subtle interplay between electronic correlation, lattice
vibration, and phenomena such as superconductivity and
colossal magnetoresistance. We propose an approach for
simulating fermionic Hubbard models extended to include
strong long-range interactions with lattice vibrations, by
discussing Rydberg states of cold atoms in bilayer lattices.
Such a simulator is likely to shed light on a wide range of
unconventional superconductors with transition tempera-
tures greater than 30 K, and might resolve aspects of
ongoing debates on cuprate mechanisms.
A quantum simulator for complex electronic systems

such as unconventional superconductors should have the
following main characteristics. (1) It must be able to simu-
late fermions. (2) It should be capable of simulating all
filling factors up to and including half filling (1 fermion
per lattice site) where the physics ofmaterials with complex
phase diagrams is most interesting. (3) All parameters,
including the phonon frequency, electron-phonon coupling,
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Hubbard U, and hopping t should be highly tunable for all
interesting physical regimes.

Several schemes for quantum simulation of interactions
between electrons and phonons have been suggested. A
proposal to bathe bosonic or fermionic impurities in an
optical lattice in a Bose-Einstein condensate (BEC)
[20–22] has led to the observation of polaron effects for
bosonic impurities [23]. This succeeds in criterion (1) as
the scheme can in principle treat very low fermion density.
However, it is essential that Fermionic impurities have a
negligible effect on the underlying BEC (specifically,
fluctuations in the BEC order parameter must be small
[20–22]). This limits the schemes to very low fermion
density, voiding criterion (2).

Alternate schemes are based on the interaction between
phonons and bosonic excitations. Interactions with high-
energy phonon states of Rydberg ions are used as a part of
themapping in proposed simulators for spin systems [24,25].
Li and Lesanovsky have discussed structural distortions
associated with exciting high energy Rydberg states in cold
ion crystals [26]. Rydberg atoms have been proposed as a
way of simulating polaron effects in strongly deformable
materials [27]. The use of cold polar molecules to obtain
Holstein polaron effects has been discussed [28]. These
schemes are not extensible to fermions, so do not fulfil
criterion (1), although they are highly tunable. The scheme
proposed in this Letter goes beyond these as it is capable of
simulating interacting Fermions with arbitrary filling factor,
while retaining a high level of control over all parameters in
the Hamiltonian, thus satisfying all of critera (1), (2),
and (3) necessary to examine the complex phase diagrams
of strongly correlated systems in the presence of phonons.

We begin by discussing how electron-phonon interac-
tions can be simulated in a system of cold, highly excited
(Rydberg) atoms in a bilayer lattice. Over long ranges, we
assume that the Rydberg atoms interact only via dipole-
dipole interactions in the strong-coupling Förster regime,
Vkl ¼ �2=jRk �Rlj3, where � is the dipole moment on
the Rydberg atom andRk is the vector to the kth atom in the
lattice (see Supplemental Material [29] for a discussion of
the origins of this interaction). The dipole moment may be

written in terms of the coefficient C3 as � ¼ ffiffiffi
2

p
C3, and

depends upon the Rydberg states chosen for the experi-
ment. The ground state atoms have no long-range interac-
tion. By coupling the ground jgi and Rydberg jri states with
a laser tuned � from the jgi ! jri transition and with
coupling strength� (the Rabi frequency) we mix the states
jgi and jri. This technique [30] of dressing the atoms with
the laser means that the trapped, ground state atoms acquire
the characteristics of the Rydberg state, but in a controllable
fashion. In particular, the coefficient C3 is replaced by an
effective interaction coefficient which we write as C0

3 ¼
ð�=2�ÞC3. We note that the use of a different regime of
dipole-dipole interactions has been proposed for the simu-
lation of liquid crystalline phases [31].

The Rydberg atoms must now be confined in a bilayer
lattice. The ‘‘itinerant’’ layer represents the electrons in a
condensed matter problem, and the ‘‘phonon’’ layer gen-
erates phonon mediated interactions. The itinerant layer
can have any filling, and tunneling between adjacent sites
is allowed. It is important that the phonon layer has 1 atom
per site and that the tunneling is forbidden—the Mott
insulator phase [3]. This is achieved by making the poten-
tial barrier in the itinerant layer smaller than in the phonon
layer. A further complication arises because the atoms in
the phonon layer must be set with low oscillating frequen-
cies, while the itinerant layer must be set up with high
phonon frequencies. This can be achieved if the optical
lattice in the phonon layer has a special configuration as
seen in Fig. 1. This form may be achieved using painted
potentials [32].
In the itinerant layer, fermions hop with amplitude t,

and experience a local Hubbard U, which originates
from scattering from the hard-core potential between
the fermions when they share the same lattice site [2].

The Hamiltonian for these interactions is HHub ¼
�t

P
hi;i0ic

y
i cj þU

P
inini (ni is the number operator for

fermions on site i, and cyi creates a Rydberg atom on site

i). Lattice vibrations are introduced by displacing the
atoms in the phonon layer. Atomic displacements do not
affect the optical lattice, so the vibrations of the atoms
are momentum independent Einstein phonons with

Hamiltonian, Hph ¼
P

�@!k�ðdy�kd�k þ 1
2Þ and with polar-

ization vectors �k� ¼ �� in orthogonal directions. Here
!k;� ¼ !� is the angular frequency of a phonon in mode

� with momentum k, and dy and d create and annihilate
phonons.
Small in-plane phonon displacements ui cause the

interaction between Rydberg states to become V 0
kl ¼

��2�2=4�2jRk þ uk �Rl � ulj3, which expands as

FIG. 1 (color online). System of bilayer Rydberg cold atoms
for simulation of strong correlations and interactions between
fermions and phonons, annotated with Hamiltonian terms. t is
the intersite hopping in the itinerant layer, !0 is the phonon

frequency, gij is the Rydberg-phonon coupling, and V
ðphÞ
0

and VðitÞ
0 are trap depths in the itinerant and phonon layers,

respectively.
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V 0ðRþ uÞ � �2�2

4�2jRj3 �
3�2�2u � R̂
4�2jRj4 : (1)

The phonons are quantized by substituting ui ¼P
k;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=2NM!k;�

q
�k;�ðdk;�e�ik�Ri þ dyk;�e

ik�RiÞ. Since all

sites in the phonon layer are occupied, and the modes
momentum independent, a multimode Rydberg-phonon
interaction with extended Holstein form is derived,

HR-ph ¼ 3�2�2

4�2

�
@

2M!0

�
1=2X

�

X
ij

R̂ij � ��

R4
ij

niðdyj;� þ dj;�Þ:

(2)

Here, Rij is a vector between an atom in the itinerant layer

at site i, and an atom in the phonon layer at site j, N the
number of sites, and M is the mass of the atoms. The
presence of multiple phonon modes in the Hamiltonian is
interesting since such interactions are difficult to simulate
with current numerical techniques.

A further simplification can be made by elongating the
potentials in the phonon layer along the direction perpen-
dicular to the planes, so that the Hamiltonian becomes

HHolstein ¼ P
ijgijniðdyj þ djÞ, with the interaction gij ¼

�2

4�2
3�2b

ðb2þr2ijÞ5=2
ð @

2M!0
Þ1=2, where rij is the distance between

the projection of sites i and j onto the same layer and b
is the interplane distance. To compare with condensed
matter analogues, a Holstein model, where the local elec-
tron density couples to local optical phonon modes [18],

has gðHolÞij � �ij. In other condensed matter systems,

Fröhlich electron-phonon interaction generalized to lattice
models (also known as the extended Holstein interaction)

has the form gðFrÞij � expð�rij=RscÞðb2 þ r2ijÞ�3=2, where

Rsc is a screening radius [33].
When the phonon energy is much larger than hopping,

the effective instantaneous interaction between Rydberg
atoms in the itinerant layer mediated though the pho-
non layer is �zt�

P
m�ðrÞ=�ð0Þ, where �ðrÞ=�ð0Þ ¼P

mgr;mg0;m=
P

mg0;mg0;m. Figure 2 shows a comparison

between the shapes of Rydberg and lattice Fröhlich effec-

tive interactions �ðFrÞðxÞ=�ðFrÞð0Þ for various interplane
distances and screening radii (a is the intersite distance
in the plane). As would be done in the experiment, the
near-neighbor interactions are matched by modifying b to
get the closest possible correspondence to the Fröhlich
interaction that is to be simulated. An excellent correspon-
dence between the shapes of the interactions is seen for
interplane distance b & a. The origin of the effective
interaction is discussed in the Supplemental Material [29].

To demonstrate the scheme, we use CTQMC calcula-
tions [34] to compute the properties of polarons and bipo-
larons in the bilayer lattice and compare with results from
the screened Fröhlich interaction (Fig. 3). The simulations
include phonon-mediated interactions, the HubbardU, and

also the small direct dipole-dipole interaction between
atoms in the itinerant layer, Hdirect ¼

P
i�i0Vii0nini0 (as

discussed in the Supplemental Material [29]). A very close
agreement is found between the quantum simulator and
Fröhlich system, further demonstrating that the small dif-
ferences in the tails of the interaction and the residual long-
range interactions in the itinerant layer do not affect local
pairing.
Finally, we discuss a realistic experimental setup for

building the quantum simulator. We recommend that
experimentalists stage their investigations by using easier
to control bosonic Rydberg atoms before moving on to
fermions. A bilayer optical lattice may be set up with
painted potentials [32], a powerful technique with a high
level of control. Creating a bilayer painted lattice requires

two focused horizontal sheets. Gaussian spots of waist wðitÞ
are focused on the itinerant sheet, and pairs of spots with

FIG. 2. Comparison between effective Rydberg-Rydberg inter-
actions in the quantum simulator �ðxÞ=�ð0Þ mediated via pho-
nons in the Rydberg atom system here, and the effective
electron-electron interaction �ðFrÞðxÞ=�ðFrÞð0Þ mediated by pho-
nons in a typical condensed matter system with Fröhlich inter-
actions for various interplane distances. A good correspondence
between the effective interactions is seen.
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FIG. 3 (color online). Comparison of polaron and bipolaron
energies calculated for the Rydberg quantum simulator (with
b ¼ 1:468a), and for a screened Fröhlich interaction in the
condensed matter analogue. � ¼ �ð0Þ=2ztM!2 and z is the
in-plane coordination number. To highlight effects of changes
in U, values of 0 and 8t are used. The small differences in the
tails of the interaction do not strongly affect the physics. kBT ¼
0:014t, ! ¼ 0:2t. Error bars are smaller than the points.
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waist wðphÞ separated by a distance 2D are painted in the
phonon layer. The resulting lattices are filled with Rb
atoms and detuned from the 48 S state by �¼125MHz,
with � ¼ 10 MHz leading to �2 ¼ 173 MHz (note that
the values found here for the bosonic Rb are representative
of all alkali Rydberg atoms). Figure 4 shows the dimen-
sionless parameters calculated for a realistic setup, with
a ¼ 2:62 �m and b ¼ 3:67 �m. Spot lattices in the itin-

erant layer have wðitÞ ¼ 2:46 �m, so the potentials overlap

leading to a near sinusoidal potential with VðitÞ
0 ¼ 70:1 Hz

and energy level spacing in the itinerant layer of 153 Hz,
U ¼ 5:34 Hz, t ¼ 4:83 Hz, so a one band model will be
simulated. Phonon frequencies are easily changed in the
phonon layer by tuning D, and can therefore be changed

independently. As an example, with V
ðphÞ
0 ¼ 578 Hz,

wðphÞ ¼ 0:655 �m, and D ¼ 0:999wðphÞ, !ðphÞ
0 ¼ 13:8 Hz

and � ¼ 1:00 is achieved—challenging but possible with a
state of the art diffraction-limited optical arrangement. A
simpler 1D version of the experiment that only requires a
single horizontal sheet can be performed using two
coupled chains (a phonon chain and an itinerant chain)
and is recommended as a starting place when implement-
ing the experiment. In 1D, we find equally good corre-
spondence between the quantum simulator and condensed
matter analogue.

In the bilayer system, the interesting physics are
encoded in the momentum distribution of the gas held in
the itinerant layer. What we want to study is the correlation
function Cðk; �;�k;��Þ. To extract this, the momentum
distribution must be observable. In the experiments in
Ref. [35], this was accomplished using a time-of-flight
method, where the momentum distribution of the roaming
atoms is mapped onto the spatial location at the time of
imaging.

Since it is the purpose of the proposed system to under-
stand phase diagrams, we briefly note the effect that

different interaction types have in forming and modifying
these phases. Repulsive Hubbard U promotes a Mott insu-
lating state and antiferromagnetism close to half filling,
and may promote superconductivity through spin fluctua-
tions. It may also control the form of the superconductivity,
reducing or eliminating s-wave pairing. Direct in-plane Vij

may promote charge ordering and suppress superconduc-
tivity if it is repulsive, and could enhance superconductiv-
ity when attractive. Interaction with phonons promotes
BCS superconductivity at weak coupling, and a BEC of
bipolarons for large �.
In this Letter, we have shown how systems of cold

Rydberg atoms in a bilayer can be used as a simulator
for electron-phonon interactions in the presence of strong
electronic correlation, of the type found in many unconven-
tional superconductors. We have carried out the mapping
to an extended Hubbard-Holstein model and used numerics
to demonstrate the simulator is capable of reproducing the
pairing and polaron physics of standard electron-phonon
models. Furthermore, we have described how the simulator
can be implemented using contemporary techniques. The
proposed system goes well beyond the possibilities of
previous quantum simulators for the simulation of inter-
actions with lattice vibrations. In particular, we can reliably
simulate half filled femion systems relevant to cuprate and
other unconventional superconductors, tune all parameters
directly through the optical lattice, and can easily include
multiple phonon modes.
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