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Extending a previously developed two-phase equation of state, we simulate head-on relativistic lead-

lead collisions with fluid dynamics, augmented with a finite-range term, and study the effects of the phase

structure on the evolution of the baryon density. For collision energies that bring the bulk of the system

into the mechanically unstable spinodal region of the phase diagram, the density irregularities are being

amplified significantly. The resulting density clumping may be exploited as a signal of the phase

transition, possibly through an enhanced production of composite particles.
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Strongly interacting matter is expected to possess a rich
phase structure. In particular, compressed baryonic matter
may exhibit a first-order phase transition that persists up to
a certain critical temperature [1], and experimental efforts
are under way to search for evidence of this phase tran-
sition and the associated critical end point [2–4].

For this endeavor to be successful, it is important to
identify observable effects that may serve as signals of the
phase structure. This is a challenging task, because the
colliding system is relatively small, nonuniform, far from
global equilibrium, and rapidly evolving, features that
obscure the connection between experimental observables
and the idealized uniform equilibrium matter described by
the equation of state. Therefore, to understand how the
presence of a phase transition may manifest itself in the
experimental observables, it is necessary to carry out dy-
namical simulations of the collisions with suitable trans-
port models.

A first-order phase transition introduces spinodal insta-
bilities [5–8] and the associated nonequilibrium dynamics
may generate observable fluctuations in the chiral order
parameter [9,10] and the baryon density [11–14]. In order
to explore this latter prospect, we simulate nuclear colli-
sions with finite-density fluid dynamics, using a previously
developed two-phase equation of state. Fluid dynamics has
the important advantage that the equation of state appears
explicitly, contrary to most microscopic transport models
where it is often unknown or is cumbersome to determine.
Because it is essential to incorporate finite-range effects
when seeking to describe the spinodal phase decomposi-
tion [5,6,8,15], we introduce a gradient term into the
expression for the local pressure in a nonuniform medium.
This term ensures that two coexisting bulk phases will
develop a diffuse interface, and we calculate the associated
temperature-dependent tension. The gradient term also
causes the dispersion relation for the collective modes in
the unstable phase region to exhibit a maximum, as is a
characteristic feature of spinodal decomposition [5]. Thus
we obtain a transport model that has an explicitly known

two-phase equation of state and that treats the associated
physical instabilities in a numerically reliable manner. This
is the first time a transport model with these key character-
istics has been developed for high-energy nuclear collisions.
As a first application of this novel tool, we simulate

head-on collisions of lead nuclei at various energies. For
a certain window of collision energies, several GeV per
nucleon, the bulk of the system will reside within the
spinodal region of the phase diagram for a sufficient time
to allow the associated instabilities to enhance the initial
density irregularities, a phenomenon that was exploited
previously to obtain experimental evidence of the nuclear
liquid-gas phase transition [5,16]. As a quantitative mea-
sure of the effect, we extract the moments of the density
distribution and compare the degree of enhancement with
what would result in the absence of the phase transition.
In order to obtain a suitable equation of state, we employ

the method developed in Ref. [8]. Thus wework (at first) in
the canonical framework, and, for a given T, we obtain the
free energy density fTð�Þ in the phase coexistence region
by performing a suitable spline between two idealized
systems (either a gas of pions and interacting nucleons or
a bag of gluons and quarks) held at that temperature. In
Ref. [8], the focus was restricted to subcritical tempera-
tures T < Tcrit, so for each T the spline points were
adjusted such that the resulting fTð�Þ would exhibit a
concave anomaly; i.e., there would be two densities,
�1ðTÞ and �2ðTÞ, for which the tangent of fTð�Þ would
be common. This ensures phase coexistence, because then
the chemical potentials �T ¼ @�fTð�Þ match, �Tð�1Þ ¼
�Tð�2Þ, as do the pressures pTð�1Þ ¼ pTð�2Þ. In the
present work, we have extended the equation of state to
T > Tcrit by using splines that have no concavity, as is
characteristic of single-phase systems. After having thus
constructed fTð�Þ for a sufficient range of T and �, we
may obtain the pressure pTð�Þ ¼ �@�fTð�Þ � fTð�Þ and
the energy density "Tð�Þ ¼ fTð�Þ � T@TfTð�Þ by suitable
interpolation and then tabulate the equation of state
p0ð"; �Þ, on a convenient Cartesian lattice.
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The resulting phase diagram in the (", �) phase plane is
illustrated in Fig. 1. At a given net baryon density �, the
lower bound on the energy density is given by "T¼0ð�Þ,
which represents the effect of compression. The lower and
upper boundaries of the phase coexistence region are
traced out by �1ðTÞ and �2ðTÞ, respectively. Uniform
matter is thermodynamically unstable inside this region;
while it is mechanically metastable near the phase coex-
istence boundaries, it loses mechanical stability when the
speed of sound vanishes and density irregularities are
amplified inside this spinodal boundary.

It is important to recognize that the model describes the
instabilities not only in the unstable spinodal region but
also those in the surrounding metastable region in which
finite seeds are required for amplification to occur (yield-
ing nucleation or bubble formation [13]). Thus, density
irregularities may be amplified by the metastable region as
well, and any clumping generated inside the spinodal
region may be further enhanced as the system expands
through the nucleation region.

When the dynamical evolution is governed by ideal fluid
dynamics (see below), the instability boundary is charac-
terized by the vanishing of the isentropic sound speed,
vs ¼ 0, where v2

s � ð�=hÞð@p=@�Þs=�, with s being the

entropy density and h ¼ pþ " the enthalpy density. For
dissipative evolutions, the finite heat conductivity causes
the instability region to widen as the boundary is then
characterized by the vanishing of the isothermal sound
speed, vT ¼ 0, where v2

T � ð�=hÞð@p=@�ÞT � v2
s . These

instability boundaries are also indicated in Fig. 1.

In order to ascertain the dynamical effects of the first-
order phase transition, we construct a one-phase partner
equation of state by replacing, for any T < Tcrit, the actual
fTð�Þ by the associated Maxwell construction, fMT ð�Þ ¼
fTð�iÞ þ ð�� �iÞ�ð�iÞ, through the coexistence region
�1ðTÞ< �< �2ðTÞ, where fMT ð�Þ< fTð�Þ.
For our present investigation, we describe the evolution

of the colliding system by ideal fluid dynamics, because
dissipative effects are not expected to play a decisive
role for the spinodal clumping [15]. The basic equation
of motion expresses four-momentum conservation,
@�T

� ¼ 0, where T��ðxÞ ¼ ½pðxÞ þ "ðxÞ�u�ðxÞu�ðxÞ �
pðxÞg�� is the stress tensor. It is supplemented by the
continuity equation @�N

� ¼ 0 for the baryon charge cur-

rent density N�ðxÞ ¼ �ðxÞu�ðxÞ, where u�ðxÞ is the four-
velocity of the fluid. These equations of motion are solved
by means of the code SHASTA [17] in which the propagation
in the three spatial dimensions is carried out consecutively.
A proper description of spinodal decomposition requires

that finite-range effects be incorporated [5,6]. Therefore,
following Refs. [8,15], we write the local pressure as

pðrÞ ¼ p0ð"ðrÞ; �ðrÞÞ� a2
"s
�2
s

�ðrÞr2�ðrÞ; (1)

where we recall that p0ð"; �Þ is the equation of state, the
pressure in uniform matter characterized by " and �.
Furthermore, �s ¼ 0:153=fm3 is the nuclear saturation
density, and "s � mN�s is the associated energy density.
The strength of the gradient term is then conveniently
governed by the length parameter a.
The gradient term will cause a diffuse interface to

develop when matter of two coexisting phases is brought
into physical contact. The associated interface tension can
readily be determined from the equation of state [8]

�T ¼ a
Z c2ðTÞ

c1ðTÞ
½2"s�fTðcÞ�1=2dc; (2)

where c � �=�s denotes the degree of compression and
�fTðcÞ � fTðcÞ � fMT ðcÞ is the difference between the
actual free energy density at the specified compression
and that associated with the corresponding Maxwell con-
struction. The tension �T decreases steadily as T is raised
and finally vanishes at Tcrit; it is displayed in Fig. 2 as
obtained for various values of the range a.
Furthermore, uniform matter inside the spinodal region

(where v2
s < 0) is mechanically unstable, and density rip-

ples of wave number k will be amplified at a rate �kð�; "Þ
that depends on the strength of the gradient term: �2

k ¼jvsj2k2 � a2ð"s=hÞð�=�sÞ2k4. Thus, the gradient term
introduces a penalty for the development of short-range
undulations, and �k exhibits a maximum at the favored
length scale; the familiar dispersion relation for ideal fluid
dynamics, �k ¼ jvsjk, is recovered in the absence of a
gradient term, a ¼ 0.
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FIG. 1 (color online). The (", �) phase diagram: "T¼0ð�Þ, the
minimal " for a given � (black line); the phase-coexistence
boundary (red line) ending at the critical point (c. p.), as well as
the isothermal spinodal boundary where vT ¼ 0 (green line) and
the isentropic spinodal boundary where vs ¼ 0 (blue line). Points
corresponding to counterstreaming Lorentz-contracted nuclei are
shown for various energies Elab, indicated in AGeV (circles). The
two contours (dashed line) show where the points of maximum
compression are concentrated in ensembles of collisions simulated
with fluid dynamics for Elab ¼ 2 or 5 AGeV.
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These spinodal growth rates have been extracted by
following the fluid-dynamical evolution of small harmonic
perturbations in uniform matter. Figure 2 shows the result-
ing �k curves extracted at the phase point (6�s, 10"s)
located in the central spinodal region (see Fig. 1). Because
the numerical algorithm inevitably produces some degree of
dissipation [17], the growth rates extracted for a ¼ 0 devi-
ate from the exact ideal dispersion relation �k ¼ jvsjk. Our
studies suggest that, while those results are reliable only up
to k & 4=fm, the use of a finite-range a > 0 extends validity
to significantly finer scales.

Having thus shown that our model produces both a mean-
ingful interface tension and reasonable spinodal growth
rates, we apply it to central collisions of lead nuclei bom-
barded onto a stationary lead target at various kinetic ener-
gies Elab. For each energy, an ensemble of 200 separate
evolutions is generated, each starting from a different initial
state obtained by means of the ultrarelativistic quantum
molecular dynamics model (in its cascade mode) [18–20]
in order to take account of the nonequilibrium dynamics in
the very early stage of the collision. The switch from

ultrarelativistic quantum molecular dynamics to fluid dy-
namics occurs at a time t0 when the two Lorentz-contracted
nuclei have just passed through each other and all initial
collisions have occurred. The needed fluid-dynamical
quantities �ðrÞ, "ðrÞ, and uðrÞ are then extracted from
the ultrarelativistic quantum molecular dynamics state
by representing each hadron by a Gaussian of 1 fm width
and mapping this information onto a Cartesian spatial
lattice [21]. Thus the effects of stopping as well as local
event-by-event fluctuations are naturally included in the
ensemble of the initial states.
Figure 2 brings out the intimate relationship between the

interface tension �T and the spinodal growth rates �k, and
the range parameter a merely presents a convenient means
for linking the two properties. For the present Letter, we
have adjusted a so that the zero-temperature interface ten-
sion is approximately 10 MeV=fm2, the value that was also
preferred in Ref. [13]. This corresponds to the middle curves
in Fig. 2, obtained for a ¼ 0:033 fm.
The key effect of the first-order phase transition is the

spinodal amplification of spatial irregularities [5,6,8,15].
In order to obtain a quantitative measure of the resulting
degree of clumping in the system, we extract the moments
of the (net) baryon density distribution �ðrÞ:

h�Ni � 1

A

Z
�ðrÞN�ðrÞd3r; (3)

where A ¼ R
�ðrÞd3r is the total (net) baryon number.

Thus the corresponding normalized moment h�Ni=h�iN is
unity for N ¼ 1. These quantities have observational rele-
vance, because they are intimately related to the relative
production yield of composite baryons.
The time evolution of the normalized density moments

is illustrated in Fig. 3. Generally, for a given density
distribution �ðrÞ, the normalized moments increase with
the order N, as one would expect. At the initial time t0, the
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FIG. 2 (color online). Effect of the gradient term: For various
values of the parameter a in Eq. (1) is shown the interface
tension �T as a function of T (upper panel) and the growth
rate �k as a function of the wave number k of a disturbance, as
obtained with ideal fluid dynamics (lower panel).
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pre-equilibrium fluctuations are transcribed into the fluid-
dynamical functions (see above), and they may then be
amplified subsequently by the instabilities associated with
the first-order phase transition. For comparison, we show
also the corresponding results for the one-phase partner
equation of state that has no instabilities. There is a striking
difference between the two sets of results: Whereas the one-
phase equation of state hardly produces any amplification at
all, the one having a phase transition leads to significant
enhancements that increase progressively with N and
amount to well over an order of magnitude for N ¼ 7.
This clearly demonstrates that the first-order phase transi-
tion may have a qualitative influence on the dynamical
evolution of the density. Because of the variations in the
initial conditions, the phase regions explored differ from one
collision to the other. As a result, some of the evolutions
experience amplifications that are significantly larger than
the ensemble average (by up to a factor of 5 or so), whereas
more evolutions are affected considerably less.

Figure 3 depicts what would happen if the expansion
were to continue while maintaining local equilibrium so
the generated density enhancements eventually subside.
However, as the hadronic gas grows more dilute, local
equilibrium cannot be maintained. Consequently, if the
decoupling occurs sufficiently soon after the clumps are
formed, the associated phase-space correlations may sur-
vive. Studies of this issue are under way.

The degree of density clumping generated during a col-
lision depends on how long the bulk of the matter is exposed
to the spinodal instabilities. The optimal situation occurs for
beam energies that produce maximum bulk compressions
lying well inside the unstable phase region, because the
instabilities may then act for the longest time [8,15]. At
lower energies, an ever smaller part of the system reaches
instability and the resulting enhancements are smaller.
Conversely, at higher energies, the maximum compression
occurs beyond the spinodal phase region and the system is
exposed to the instabilities only during a relatively brief
period during the subsequent expansion. For still higher
energies, the spinodal region is being missed entirely.

Figure 4 shows the (ensemble average) maximum
enhancement achieved as a function of the beam energy
for the two equations of state. The existence of an optimal
collision energy is clearly brought out. While the presently
employed equation of state suggests that this optimal range
is Elab � 2–4 AGeV, it should be recognized that others
may lead to different results. Furthermore, the magnitude
of the effect depends on the degree of fluctuation in the
initial conditions which in turn are governed by the pre-
equilibrium dynamics. On the other hand, our studies
suggest that the optimal energy is rather insensitive to the
range parameter a.

In summary, by augmenting an existing fluid-dynamical
code with a gradient term, we have obtained a transport
model that is suitable for simulating nuclear collisions in

the presence of a first-order phase transition: It describes
both the tension between coexisting phases and the dy-
namics of the unstable spinodal modes. Applying this
novel model to lead-lead collisions, we have found that
the associated instabilities may cause significant amplifi-
cation of initial density irregularities. Because such clump-
ing is expected to facilitate the formation of composite
particles, such as deuterons and tritons, this effect may be
experimentally observable.
However, the magnitude of the generated clumping

depends considerably on the largely unknown specifics
of the equation of state which determines whether the
unstable region of the phase diagram is entered during the
collision, for how long the system remains there, and how
rapidly irregularities are amplified. It would therefore be
interesting to expand the present kind of study to other
equations of state and also to ascertain the importance of
dissipative effects [15,22].
Furthermore, standard fluid dynamics propagates the

system deterministically and thus ignores the effect of
the ever present thermal noise. Because the initial state,
in the present study, is already endowed with significant
fluctuations, the thermal noise is likely to play only a minor
role (see Ref. [5]), but it would be interesting to investigate
this quantitatively. (A study of the effect of noise in chiral
fluid dynamics was recently made [23].)
Spinodal decomposition is an inherent characteristic of

first-order phase transitions, and this nonequilibrium phe-
nomenon may therefore provide especially compelling
signals. The present study demonstrates that the phase
structure does affect the character of the density evolution,
and we hope that these results will stimulate efforts to
develop analysis techniques for extracting the related
observables from experimental data.
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