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An all-resonant method is proposed to control the quantum state of superconducting resonators. This

approach uses a tunable artificial atom linearly coupled to resonators, and allows for efficient routes to

Fock state synthesis, qudit logic operations, and synthesis of NOON states. This resonant approach is

theoretically analyzed, and found to perform significantly better than existing proposals using the same

technology.
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Achieving complete control of the quantum state of light
is a primary goal in the field of quantum optics and
quantum information [1]. The preparation and subsequent
interaction of individual photons for quantum communica-
tion and computation in the optical domain remains a
challenging enterprise [2]. By contrast, excitations of the
electromagnetic modes of superconducting coplanar wave-
guide resonators can be readily prepared and manipulated
using Josephson junction circuits [3]. These microwave
photons have recently been proposed as key ingredients
in a superconducting quantum computer [4]. Finding the
fastest and most efficient way to control these modes is an
outstanding problem.

Great progress has been made by using a tunable artifi-
cial atom, the superconducting phase qubit, to excite and
transfer excitations to and from superconducting resona-
tors [5]. Subsequent experiments have prepared individual
Fock states [6], their superpositions [7], and entangled
states of two such resonators [8]. Despite this significant
progress, complete control of these resonators [9,10]
appears to require a Fock-state-selective interaction. Such
number-state-dependent interactions were first seen by
Schuster et al. [11] and exploited for Fock-state measure-
ment [12] in transmon qubit devices, while Fock states
have also been prepared using sideband transitions [13].
These latter experiments used dispersive (off-resonant)
coupling of the qubit to a resonator, while the former
experiments utilized a carefully chosen sequence of qubit
operations performed off resonance and resonant qubit-
resonator swaps. As resonant interactions are often faster
than their off-resonant counterparts, an important question
is whether complete control can be achieved using resonant
interactions alone.

In this Letter, I present precisely such an all-resonant
method appropriate for superconducting resonators. This
method is shown to be applicable to the synthesis of
arbitrary superpositions of Fock states of one and two
resonators. By performing all of the important steps with
the qubit on resonance with the resonator, these applica-
tions are found to be significantly faster, more efficient,
and of higher fidelity than previous proposals. While this

method is designed for superconducting experiments
with existing technology, I will present the basic prin-
ciples using the broadly applicable Jaynes-Cummings
Hamiltonian, so that any tunable atom can be used to
quickly control any harmonic oscillator mode to which it
is coupled.
Model.—The Jaynes-Cummings Hamiltonian [1] is

H =@ ¼ !q�þ�� þ!ra
yaþ gða�þ þ ay��Þ; (1)

where !q and !r are the transition frequencies and �þ ¼
j1ih0j and ay are the creation operators for the qubit and
resonator, respectively, and g is the coupling between the
qubit and oscillator. Famously, this can be diagonalized by
the eigenstates

jn;�i ¼ cos�nj0; ni � sin�nj1; n� 1i;
jn;þi ¼ sin�nj0; ni þ cos�nj1; n� 1i; (2)

where tanð2�nÞ ¼ 2g
ffiffiffi
n

p
=�, � ¼ !q �!r, and the jq; ni

represents a state with the qubit q ¼ 0 or 1 and oscillator
number n. The corresponding eigenvalues are given by

En;�=@ ¼ n!r þ 1

2

�
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4ng2

q �
: (3)

Note that the ground state has energy E0 ¼ 0 and is given
by j0i ¼ j0; 0i. The energy level diagram is shown in
Fig. 1(a), along with the four different types of transitions
jn;�i ! jnþ 1;�i, whose frequencies are given by

!n;� ¼!r � 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4ðnþ 1Þg2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4ng2

q �
;

!n;⤢ ¼!r þ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4ðnþ 1Þg2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4ng2

q �
;

!n;⤡ ¼!r � 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4ðnþ 1Þg2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4ng2

q �
:

(4)

Roughly speaking, the transitions!n;� correspond to exci-

tations of the resonator, while !n;⤢ corresponds to rota-

tions of the qubit. This is most clearly seen in the
dispersive regime ��g, where !n;� � !r � ½g2=��
ð2nþ 1Þg4=�3� is the Kerr-shifted resonator transition
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and !n;⤢ � !q þ ð2nþ 1Þg2=� is the Stark-shifted qubit

transition. However, in the resonant regime, when � ¼ 0,
the latter transition exhibits a significantly stronger depen-
dence on n, as shown in Fig. 1(b), while a new transition
!n;⤡ becomes possible by driving the qubit by a term

H drive ¼ @fðtÞ�x. This can be seen by the matrix elements
of �x and x ¼ aþ ay, as shown in Figs. 1(c) and 1(d).

Previous transmon experiments have probed only a sub-
set of the allowed transitions in Fig. 1. The dispersive!n;⤢
transitions were studied in Ref. [11], while the resonant
!1;� transitions were studied in Ref. [14]. Observing the

resonant diagonal transitions !n;⤡, a novel type of side-

band transition, would be a further test of the Jaynes-
Cummings model for superconducting circuits, and offers
a new path toward Fock state synthesis and control.

Previous theoretical studies have considered sudden
shifts of the qubit frequency from the dispersive regime
to the resonant regime to swap excitations from the qubit to
the resonator j1; ni ! j0; nþ 1i, and with qubit transitions
performed in the dispersive regime. Here I consider
controlling the system when the qubit and resonator are
resonant, by driving the !n;⤢ and !n;⤡ transitions simul-

taneously. As will be shown below, these transitions allow
for fast, high-fidelity control of the state. Of course, for
� ¼ 0, the eigenstates of the qubit-resonator system are
entangled. To decouple the resonator, one could adiabati-
cally shift the qubit frequency to the dispersive regime.

However, for many applications, this procedure is unnec-
essary, so I will focus on controlling the system in the
resonant regime.
Fock state preparation.—The first task to consider is the

preparation of a Fock state j0; Ni, which by using the
adiabatic decoupling reduces to the transformation j0i !
jN;�i. The simplest means to do sowould involveN steps,
each performing a two-level transition by alternately driv-
ing the transitions !n;⤢ and !nþ1;⤡, whose precise

sequence depends on whether N is even or odd.
However, since these transitions are sufficiently separate
in frequency, these transitions can be driven simulta-
neously. By choosing an appropriate set of amplitudes,
one can perform this transformation in a single step.
Specifically, I consider driving functions of the form

fðtÞ ¼ XN
n¼1

½AnðtÞ cosð!ntÞ þ BnðtÞ sinð!ntÞ�; (5)

where the slowly-varying envelope functions AnðtÞ and
BnðtÞ, and frequencies !n are chosen to optimize the
transition. An analytical solution to this problem can be
found in the rotating wave approximation, by letting
AnðtÞ ¼ �n and BnðtÞ ¼ 0, where the set of amplitudes is
given by

�n ¼ �0

( ffiffiffiffiffiffiffi
2N

p
for n ¼ 1;

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðN þ 1� nÞp

for 1< n � N;
(6)

and the frequencies are given by

f!ng ¼
(
!0;�; !1;⤢; . . . ; !N�1;⤡ for N odd;

!0;⤢; !1;⤡; . . . ; !N�1;⤡ for N even:
(7)

This choice of frequencies follows a zigzag pattern up the
Jaynes-Cummings ladder, while the amplitudes are chosen
so that, in a rotating frame [15], the driving Hamiltonian is
equivalent to an angular momentum operator for a
spin-N=2 system. This has the effect of driving a perfect
rotation from j0i ! jN;�i in a time T ¼ �=�0. This
analytical solution to a population transfer problem was
first studied by Cook and Shore [16], and was exploited in
the phase qudit experiment [17]; applications to perfect
state transfer in qubit networks have also been studied [18].
How does this single-step transition (with simultaneous

driving) compare with a multi-step transition (with sequen-
tial driving)? To meaningfully answer this question, we
must limit the drive amplitudes �n to a common value of
�max. The sequential, multistep transitions would then take

a time of Tmulti ¼ ½ ffiffiffi
2

p þ 2ðN � 1Þ��=�max � 2N�=�max

(the factors of
ffiffiffi
2

p
and 2 are due to the transition matrix

elements). For the single-step transition, Eq. (6) shows that
�n <�0ðN þ 1Þ, so that Tsingle � N�=�max, a factor of

two better than the multistep transition. Studies of perfect
state transfer [19] show that this is in fact an optimal
solution, given constant and bounded amplitudes.

FIG. 1 (color online). Jaynes-Cummings Hamiltonian transi-
tions. (a) Energy level diagram, with the four basic transitions
!n;þ (red solid arrows, on left), !n;� (blue solid arrows, on

right), !n;⤡ (blue dashed arrows, right to left), and !n;⤢ (red

dashed arrows, left to right). (b) Transition frequencies !n=2�
as a function of n, for !r=2� ¼ 6 GHz, g=2� ¼ 180 MHz, and
� ¼ 0. (c) Transition matrix elements hjj�xjki due to a drive
on the qubit. (d) Transition matrix elements hjjxjki, with x ¼
aþ ay, due to a drive on the resonator. Dark values indicate
larger matrix elements, while the corresponding transitions are
indicated by the symbols.
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For the system at hand, of course, there are more than N
transitions involved, opening up a significant source of
error. Isolating a single transition in a multilevel system
has inspired a number of control methods [20–22]. I have
extended the two-quadrature approach of Ref. [21] to the
multilevel transition case studied here by numerically
simulating the time-dependent Schrödinger equation
i@@tj�ðtÞi ¼ ½H þH driveðtÞ�j�ðtÞi, j�ð0Þi ¼ j0i with
the following envelope functions

AnðtÞ ¼
XM
k¼1

aðkÞn ½1� cosð2�kt=TÞ�;

BnðtÞ ¼
XM
k¼1

bðkÞn sinð2�kt=TÞ;
(8)

for various values of the total time T and number of Fourier
components M. For each such case, I numerically opti-
mized the fidelity F ¼ jhN;�j�ðTÞij2 to find optimal

Fourier components aðkÞn , bðkÞn and driving frequencies !n

[15]. Figure 2(a) shows the resulting error 1�F as a
function of T of such an optimization performed for N ¼
4 and for M ¼ 1 and 3. The time-dependent probabilities
for an optimized transition with T ¼ 50 ns and M ¼ 3
Fourier components are shown in Fig. 2(b); the optimized
frequencies and Fourier components can be found in the
Supplemental Material [15]. For M ¼ 1, the T ¼ 50 ns
pulse has F > 0:99, while for M ¼ 3 extraordinarily
high fidelity transitions are possible in as little as 10 ns.
This result highlights the power of this all-resonant
approach, being significantly faster than the 120 ns taken
by the Rabi-swap sequence of Ref. [6] (which used
�0=2� � 25 MHz and g=2� � 18 MHz). High fidelity
transitions for lower values of N can be achieved using
smaller values of T or M; results for the N ¼ 1 case (i.e.,
j0i ! j1;�i) can be found in Ref. [15].

This method has several advantages over alternative
proposals for resonator control. First, there is no need to
shift the qubit frequency to exchange quanta between the
qubit and the resonator; the !n;⤡ transitions accomplish

this directly, much like sideband transitions in ion-trap
systems. This allows for larger qubit-resonator couplings.
Second, this approach can also be pursued for large cou-
plings and photon numbers, whereas dispersive manipula-
tions are limited to N < ncrit ¼ 4�2=g2. While the
multilevel structure of superconducting qubits will also
limit the transitions [20–22], this effect is minimized
when g < j!01 �!12j, precisely when the two-level qubit
approximation is appropriate for the Jaynes-Cummings
Hamiltonian. Finally, the large frequency separation in
the resonant regime allows for much faster transitions
than using dispersive transitions (on the qubit or resonator).
That is, to avoid nonresonant transitions one should require
�max � �!, where �! is the smallest frequency separa-
tion in the problem. Using the expressions of Eq. (4), the

frequency separations in the resonant regime are�!⤢;⤡ �
g=n1=2, �!� � g=n3=2, much larger than those in the
dispersive regime �!⤢ � 2g2=� and �!� � 2g4=�
(since g � �). For the case of Fig. 2(b), the Fourier

components satisfy jaðkÞn j; jbðkÞn j< �!=2� � 237 MHz
for pulse times T > 10 ns [15]. By using the transitions
with the largest frequency separation, the control pulse can
be performed as quickly as possible.
This time advantage is particularly important in the

presence of decoherence. Following the analysis of
Ref. [23], and letting the qubit and resonator have dissipa-
tion times of Tq and Tr, respectively, the fidelity of this

transition is F � e�T=ðTTqÞe�NT=ð2TrÞ for both the single-
step procedure and the procedure of Ref. [6]. By reducing
the total time of the sequence by a factor of two (or more),
the procedure described above will achieve higher fidelity.
Qudit operations.—The Fock states of the resonator can

be used as an effective d-level system, called a qudit [10].
Arbitrary operations on the qudit can be composed by
rotations Rj;kð�Þ:

Rj;kð�Þ ¼ exp

�
�i

�

2
ðjjihkj þ jkihjjÞ

�
: (9)

The criterion for such arbitrary control is a connected
coupling graph of such rotations [24]. The coupling graph
for the Jaynes-Cummings ladder is shown in Fig. 3(a),
which clearly satisfies this criterion. Here all operations
can be performed using the transitions !⤢;⤡, which are

indicated by the dark edges; the intermediate states jn;þi
have been omitted for simplicity. As there are many pos-
sibilities for simultaneous transitions, there are many
opportunities for qudit logic synthesis.
As a simple example, consider the rotationR0;4ð�Þ. This

is not directly possible, as indicated by the lack of an edge
between j0i and j4;�i in the coupling graph, but this
rotation can nevertheless be performed by the sequence

FIG. 2 (color online). (a) Error as a function of the pulse time
T for the Fock state transitions j0i ! jN;�i, for N ¼ 4 and
using the same parameters as Fig. 1. The circles are for a
numerically optimized two-quadrature pulses with M ¼ 1
Fourier component, while the squares are for M ¼ 3 Fourier
components. (b) Time-dependent probabilities jhvj�ðtÞij2 as a
function of time t for an M ¼ 3 pulse with T ¼ 50 ns, where
jvi ¼ j0; 0i; j1;þi; j2;�i; j3;þi, and j4;�i.
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R0;3ð�ÞR3;4ð�ÞR0;3ð�Þ, as illustrated in Fig. 3(b). The

first and final rotations use the simultaneous control pulses
described above, which implement the swap j0i $ j3;�i,
while state j2;�i remains unaffected. This sequence can
be generalized to implement any rotation Rj;kð�Þ in three

steps. This represents a significant advance over the
scheme presented in Ref. [10], which would require nine-
teen steps (with four in the dispersive regime).

NOON state synthesis.—As a final example, I consider
the generation of entangled states between two supercon-
ducting resonators, of the form

j�NOONi ¼ 1ffiffiffi
2

p ðjN; 0i þ j0; NiÞ: (10)

Methods to synthesize such ‘‘NOON’’ states have been
proposed in Refs. [9,25], the latter implemented in
Ref. [8]. Each of these methods uses a sequence of N qubit
rotations and swaps. I now show how the approach of
Refs. [8,25] can be simplified by the single-step Fock
procedure.

This method begins by preparing two qubits in the
entangled state

j�0i ¼ 1ffiffiffi
2

p ðj1iAj0iB þ j0iAj1iBÞ; (11)

with each qubit coupled to a resonator (A or B) in its
ground state. By adiabatically moving qubit A (B) onto
resonance with resonator A (B), the joint state is mapped to

j�1i ¼ 1ffiffiffi
2

p ðj1;þiAj0iB þ j0iAj1;þiBÞ: (12)

For even N, one can simply drive the transition j1;þi !
jN;�i on A and B in parallel, and move the qubits
off resonance, yielding j�NOONi in a single step. For odd
N, one must first drive the transition j1;þi ! j1;�i

(which leaves j0i unchanged), and then drive the transition
j1;�i ! jN;�i, yielding j�NOONi in two steps.
By using the all-resonant transitions, this method out-

performs previous proposals in two other ways. First, this
method can be performed much faster than the first
proposal [9], which used the dispersive number-state-
dependent transitions. Second, this method uses a two-
level system to control the Fock states, as opposed to using
a three-level system to selectively excite the resonators
[8,25]. As shown in Ref. [23], the use of higher excited
states leads to a lower fidelity. Thus, this approach is faster,
achieves a higher fidelity, and uses fewer steps than pre-
vious proposals.
Conclusion.—There are many applications of entangled

resonators for quantum measurement, Bell inequality tests,
and quantum information, which have been described else-
where [23]. The all-resonant approach presented here pro-
vides an attractive route to enabling such applications,
using existing technology.
There are two limitations to this approach, to which we

now turn. To decouple the qubit-resonator state, we might
use an adiabatic mapping of the uncoupled qubit-resonator
state j0; ni to the Jaynes-Cummings states jn;�i. One
means to alleviate this is to use a three-level system such
that !r ¼ !12 [8,10] and apply resonant pulses to perform

the mapping j0; ni ! j~n;�i ¼ ðj1; ni � j2; n� 1iÞ= ffiffiffi
2

p
,

followed by a control sequence on the states j~n;�i. An
alternative is to use the Kerr effect alone, as recently
analyzed in Ref. [26], and drive the !n;� transitions, albeit

at a slower rate. The second limitation is the direct excita-
tion of qubit states, which thwarts taking full advantage of
superconducting resonators, namely their potential for lon-
ger coherence times. However, current experiments have
shown that qubits can have coherence times approaching
100 �s [27], so that the method proposed here should
allow for complex control of states with photon numbers
of ten or more.
In conclusion, I have proposed an all-resonant scheme to

perform a range of quantum control protocols for super-
conducting resonators. This approach has many advantages
over previous studies, and extensions may unlock the
power of on-chip microwave photons. Finally, many of
these ideas can be directly applied to other systems of light
interacting with real and artificial atomic systems.
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