
Long-Range Spin-Polarized Quasiparticle Transport in
Mesoscopic Al Superconductors with a Zeeman Splitting
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We report on nonlocal transport in multiterminal superconductor-ferromagnet structures, which were

fabricated by means of e-beam lithography and shadow evaporation techniques. In the presence of a

significant Zeeman splitting of the quasiparticle states, we find signatures of spin transport over distances

of several�m, exceeding other length scales such as the coherence length, the normal-state spin-diffusion

length, and the charge-imbalance length. The relaxation length of the spin signal shows a nearly linear

increase with magnetic field, hinting at a freeze-out of relaxation by the Zeeman splitting. We propose that

the relaxation length is given by the recombination length of the quasiparticles rather than a renormalized

spin-diffusion length.
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The creation and manipulation of spin-polarized currents
form the basis of spintronics applications [1]. One key
ingredient is the ability to transport spin currents over meso-
scopic length scales, which are usually limited by spin-flip
or spin-orbit scattering processes. Superconductors are par-
ticularly interesting for spin injection experiments due to the
possibility to create almost 100% spin polarization [2],
enhanced spin relaxation times [3], and the separation of
spin and charge degrees of freedom [4]. Only a few experi-
ments on spin injection into superconductors have been
reported so far (see Ref. [5–7] and references therein).
Both anomalously short [7] and anomalously long [6]
relaxation times as compared to the normal state have
been reported. Here, we report on investigations of spin
transport in superconductors in the regime of large
Zeeman splitting. In this regime, a current spin polarization
of 100% can be achieved [2], which is implicitly assumed in
the classic experiments on spin polarized tunneling in high
magnetic fields [8]. We study in detail the diffusion of spin-
polarized quasiparticles by using nonlocal detection with
ferromagnetic electrodes as a function of contact distance,
temperature and magnetic field, and present evidence for
spin transport over surprisingly long distances.

Our samples were fabricated by e-beam lithography and
shadow evaporation techniques. They consist of a thin
superconducting (S) aluminum strip of thickness tAl �
10–15 nm, which was oxidized in situ to form an insulating
(I) tunnel barrier before being overlapped by several fer-
romagnetic (F) iron contacts (tFe � 15–25 nm). In addi-
tion a copper layer (tCu � 30 nm) was evaporated under a
third angle to reduce the resistance of the iron leads.
Consistent results were obtained from nine samples of
slightly different designs. We focus here on one sample
(labeled FISIF) for which the most complete data set was

recorded, and data from a reference sample with normal-
metal (N) copper contacts, but otherwise similar parame-
ters (labeled NISIN). Figure 1 shows a scanning electron
microscopy image of the FISIF sample, together with the
experimental scheme. The sample has five contacts, span-
ning contact distances d from 0.5 to 8 �m.
The local (gloc ¼ dIinj=dVinj) and nonlocal (gnl ¼

dIdet=dVinj) differential conductance for different contact

pairs was measured by standard lock-in techniques in a
setup described elsewhere [9,10]. Measurements were
performed in the superconducting state of aluminum at
temperatures down to T ¼ 50 mK, and with an in-plane
magnetic field B applied parallel to the ferromagnetic
wires. For all data shown here the magnetization of the
iron wires is aligned parallel to the magnetic field. We also
performed nonlocal spin-valve experiments in the normal
state at T ¼ 4:2 K (not shown), from which the normal-
state spin diffusion length �N ¼ 370� 10 nm and the spin
polarization of the tunnel conductance P ¼ ðG# �G"Þ=
ðG# þG"Þ ¼ 0:19� 0:05 were obtained. Here, G";# are

the junction conductances for each spin.

FIG. 1 (color online). Scanning electron microscopy image of
a sample together with the measurement scheme with the injec-
tion (inj) and detection (det) circuits.
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Figure 2(a) shows the local differential conductance of
one contact as a function of the injection bias voltage Vinj

for different applied magnetic fields B at T ¼ 50 mK. For
small B pronounced gap features at V � �205 �V are
observed as well as a negligible subgap conductance. Upon
increasing the magnetic field, the gap features broaden due
to orbital pair breaking, and for B> 0:5 T the Zeeman
splitting is seen. We describe our data with the standard
model of high-field tunneling [8] to obtain the spin-
dependent density of states n�ðEÞ, where � ¼ �1 stands
for spin up and down, respectively. From n�ðEÞ, we cal-
culate the current for each spin

I�¼GN

2e

Z
ð1��PÞn�ðEÞ½f0ðEÞ�f0ðEþeVÞ�dE (1)

where GN ¼ G# þG" is the normal-state junction conduc-

tance, and f0 is the Fermi function. The total charge
current is I ¼ I" þ I#, and the spin current is proportional

to Is ¼ I" � I#. Fits of this model to the measured con-

ductance spectra yield GN, the pair-breaking parameter �,
and the spin-orbit scattering strength bso. Details of the fit
procedure have been given previously [9,10]. The spin
polarization P ¼ 0:19� 0:01 obtained from these fits is
the same as obtained from the spin-valve experiments. The
relatively small P is typical of ultrathin alumina tunnel
barriers [11]. Figure 2(b) shows a contour plot of the
complete dataset of the local conductance as a function
of bias and magnetic field. The gap observed at B ¼
100 mT is slightly larger than at zero applied field. We
attribute this to the presence of stray fields of the ferro-
magnetic contacts. At higher fields, in the wedge-shaped
regions indicated by the lines, a single spin band dominates
conductance.

Next, we focus on the nonlocal differential conductance.
To eliminate the effect of small variations of the junction
conductances, we plot the normalized nonlocal conduc-
tance gnl=GinjGdet throughout this Letter. In Fig. 3(a)

gnl=GinjGdet is displayed as a function of the applied bias

voltage Vinj for different magnetic fields B and a contact

distance d � 1 �m. The data were measured simulta-
neously with the local conductance of Fig. 2(a), in the
configuration shown in Fig. 1. For comparison, we show
data obtained from the NISIN reference sample in Fig. 3(b).
AtB ¼ 0, there is no conductance below the gap, and above
the gap, both the FISIF and NISIN samples show a nearly
linear increase due to charge imbalance [9]. With increas-
ing magnetic field, the charge imbalance signal decreases,
as clearly seen for the NISIN sample. The FISIF sample
shows a qualitatively different behavior: (i) in the bias
range corresponding to the Zeeman splitting, a positive
peak arises for Vinj < 0, and a negative peak for Vinj > 0;

(ii) for higher bias jVinjj * 300 �V, an additional asym-

metry evolves on top of the charge imbalance signal.
While the observation (i) is systematic for all nine samples,
(ii) was observed only in a few samples, whereas other
samples showed the symmetric charge imbalance signal
also seen in the NISIN sample at high bias. In the following
we therefore only concentrate on the asymmetric peak
features. Upon increasing the field, the peak heights
increase gradually to their extremal values at B� 0:5�
0:75 T, before the peaks start to decline, broaden and move
inwards, simultaneously. The positive peak (at negative
bias) is slightly larger than the negative peak (at positive
bias). Above the critical field Bc � 2:15 T the asymmetric
features disappear and one finds a small bias-independent
signal (not shown).

FIG. 2 (color online). (a) Local differential conductance
gloc ¼ dIinj=dVinj of one junction as a function of injector bias

Vinj for different applied magnetic fields B. (b) The same data

plotted on a color scale. The lines indicate the regions where a
single spin band dominates conductance.

FIG. 3 (color online). Normalized nonlocal differential con-
ductance gnl=GinjGdet as a function of injector bias Vinj for

different applied magnetic fields B for one pair of contacts (a),
nonlocal conductance of a pair of contacts of the NISIN refer-
ence sample (b), the data from panel (a) plotted on a color scale
(c), and calculated differential spin current (d).
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Figure 3(c) represents the same data as in Fig. 3(a) as a
contour plot with additional magnetic field steps. The lines
are duplicated from Fig. 2(b). As can be seen, the asym-
metric conductance features are limited almost entirely to
the magnetic-field and bias region of the Zeeman splitting.
For comparison, in Fig. 3(d) we show the differential spin
current dIs=dVinj calculated using Eq. (1) and parameters

obtained from the fits to the local conductance of the
injector.

Fig. 4(a) shows the normalized nonlocal conductance as
a function of the bias voltage for different contact distances
d and one fixed magnetic field and temperature (B ¼ 1 T
and T ¼ 50 mK). In general, increasing the distance
between injector and detector decreases the amplitude of
the signal, but does not affect its overall shape. Only the
signal for the shortest distance d ¼ 0:5 �m slightly devi-
ates in shape.

We have also analyzed the heights and areas of both
peaks as a function of magnetic field, temperature and
contact distance. Height and area for both peaks yielded
similar results, and we only show the peak area A of the
positive peak in the following. Figure 4(b) shows A as a
function of the applied field B for different distances d
at T ¼ 50 mK. A rises monotonically with increasing

magnetic field, until at B � 1:5� 1:75 T it reaches a
maximum and then rapidly goes back to zero. Again, this
behavior is similar for all distances, with slight deviations
at d ¼ 0:5 �m.
Figure 4(c) shows the peak area as a function of contact

distance on a semi-logarithmic scale for different magnetic
fields. The solid lines are fits to an exponential decay, from
which we obtain the spin relaxation length �S (see discus-
sion). As can be seen, the quality of the fits is very good up
to B � 1:5 T, except for the shortest distance d ¼ 0:5 �m,
which was therefore excluded from the fits. At fields above
1:5 T, the quality of the fits declined (not shown).
Figure 4(d) shows �S as a function of the applied mag-

netic field B for two different temperatures. It is about
2 �m for small magnetic fields and then increases nearly
linearly with B up to around 7 �m for B � 1:5 T. At
higher fields, �S appears to decline, but as mentioned
above the fits were not very good in this region. �S is
almost independent of temperature up to 350 mK. For
comparison, we also show the charge-imbalance relaxation
length �Q� obtained from the NISIN reference sample, and

the spin-diffusion length �N from the normal-state spin-
valve experiments.
For a simple qualitative model, we consider a BCS

superconductor in high magnetic fields, including the
effect of the Zeeman splitting [12], but neglecting orbital
pair-breaking and spin-orbit scattering for simplicity. In the
normal state, the electron energy relative to the chemical
potential � is given by �k ¼ @

2k2=2m��. The quasi-
particle energies in the superconducting state are Ek� ¼
Ek þ ��BB, where Ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2k þ �2

q
. Tunneling is

described by a straightforward extension of Refs. [4,13]
to the case of finite Zeeman splitting: The tunnel
Hamiltonian for spin-conserving tunneling between states
k� and q� in the superconductor and ferromagnet, respec-
tively, is

HT ¼ X
qk�

Tqk�c
y
k�cq� þ H:c: (2)

Electron operators c in the superconductor are written in
terms of the quasiparticle and Cooper pair operators �
and S as

cyk� ¼ uk�
y
k� þ �vkS

y� �k ��; (3)

where �k ¼ �k, �� ¼ ��, and the coherence factors are

u2k ¼ 1

2

�
1þ �k

Ek

�
; v2

k ¼ 1

2

�
1� �k

Ek

�
: (4)

The four terms appearing in the tunnel Hamiltonian for
the state k� in the superconductor are listed in Table I,
where fk� is the quasiparticle distribution function in the
superconductor, and f0 is the Fermi function describing
occupation in the ferromagnet. Summing up all contribu-
tions to the current for both spin directions yields

FIG. 4 (color online). (a) Normalized nonlocal differential
conductance gnl=GinjGdet as a function of the bias voltage Vinj

for different contact distances d at fixed magnetic field B
(b) peak area A (for the peak at Vinj < 0) as a function of B

for different d (c) semi-logarithmic plot of A as a function of d
for different B, together with fits to an exponential decay
(d) relaxation length �S derived from these fits as a function
of B, together with the charge imbalance length �Q� of the

reference NISIN structure, and the normal-state spin diffusion
length �N derived from nonlocal spin-valve experiments.
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I ¼ 1

e

X
�

Z
fG�u

2
�½f�� � f0ðE�� � eVÞ�

�G ��v
2
�½f�� � f0ðE�� þ eVÞ�gd�; (5)

where we have replaced sums over k by integration over �.
We now group terms with equal energy E inside (� < 0)
and outside (� > 0) the Fermi surface, and introduce

transverse and longitudinal distribution functions fðTÞ�� ¼
ðf�� � f ���Þ=2 and fðLÞ�� ¼ ðf�� þ f ���Þ=2 in the supercon-
ductor. Setting eV ¼ 0 for the detector junction, we obtain

I ¼ 1

e

X
�

½ðG� þG ��ÞQ�
� þ ðG� �G ��ÞS��; (6)

where

Q�
� ¼

Z
�>0

ðu2� � v2
�ÞfðTÞ��d�; (7)

S� ¼
Z
�>0

ðfðLÞ�� � f0ðE��ÞÞd�; (8)

describe the charge imbalance and spin accumulation for
each spin. The first term in Eq. (6) is the usual charge-
imbalance signal observed in both the NISIN and FISIF
sample. The second term is nonzero only for a ferromag-
netic detector junction and gives rise to the observed peaks,
as explained below.

Current injection in the bias regime of the Zeeman
splitting creates both a charge imbalance Q�

# and spin

accumulation S# in the lower Zeeman band, while the upper

Zeeman band remains unoccupied. After diffusion over
a distance d > �Q� along the superconductor we have

Q�
# � 0, but there is still a finite spin accumulation S# > 0

(spin-charge separation). The detector current is then

Idet � 1

e
ðG" �G#ÞS#: (9)

We would now like to discuss the salient features of our
experiment and some open questions within this model.
(i) We expect S# / jIinjj, since for both bias directions there
is an excess population of quasiparticles. Consequently, the
sign of the detector current depends only on the sign of
the spin polarization P. Since both S# and Idet are even

functions of bias, the differential signals displayed in
Figs. 3 and 4 are odd functions, explaining the asymmetric
peaks. (ii) Once the upper Zeeman band is reached by the
bias voltage, it yields an opposite contribution, canceling
the signal. Therefore, the signal is restricted to the region
of the Zeeman splitting, as seen in Fig. 3(c). (iii) The peak
height is proportional to the injector current. Therefore, the
peak at negative bias is slightly larger than the peak at
positive bias. The peak height ratio should be ð1þPÞ=
ð1�PÞ�1:5, which is consistent with the data shown in
Figs. 3(a) and 4(a). (iv) The normal-state spin diffusion
length �N at low temperatures is determined by elastic spin
flips due to spin-orbit scattering at nonmagnetic impurities
(see Ref. [1] and references therein for a comprehensive
discussion). In superconductors without Zeeman splitting,
the same mechanism is also expected to lead to spin
relaxation (renormalized by coherence factors) [3]. In the
energy window of the Zeeman splitting, however, elastic
spin flips can not relax the nonequilibrium spin accumu-
lation S# due to the spin-dependent density of states. This

explains why the observed spin relaxation length �S in the
superconducting state at high fields is much larger than in
the normal state. Weak relaxation paths might come from
recombination of quasiparticles to Cooper pairs (possibly
aided by spin-orbit scattering [14]) or from inelastic spin
flips to the upper Zeeman band. The latter would also
explain the increase of �S with magnetic field, since larger
energy transfer would be needed for increasing Zeeman
splitting. A quantitative model for the relaxation mecha-
nism is an open question to theory. A numerical simulation
of the nonequilibrium distributions including a realistic
model of inelastic scattering might also explain why the
asymmetric nonlocal conductance signal extends to high
bias in some of our samples. (v) Asymmetric peaks in the
nonlocal conductance were also predicted for the competi-
tion of crossed Andreev reflection and elastic cotunneling
in FISIF structures in the presence of Andreev bound states
[15,16]. Bound states generated at the FIS interfaces [10],
however, should extend no further than the coherence
length into the superconductor, which is clearly inconsis-
tent with the length scales observed in our experiment.
Nevertheless, a common feature of bound states and
Zeeman splitting is the existence of a spin-polarized den-
sity of states in the superconductor, and the conductance
features look intriguingly similar. Another question to
theory is therefore whether a coherent picture of both
effects can be obtained.
In conclusion, we have demonstrated spin injection and

transport in superconductors in the regime of large Zeeman
splitting of the density of states. We have found an asym-
metric nonlocal conductance signal that can be modeled by
spin accumulation in the lower Zeeman band of the quasi-
particle dispersion. The relaxation length of the spin signal
exceeds the normal-state spin-diffusion length by one order
of magnitude, and we propose that it is determined by

TABLE I. Four terms in the tunnel Hamiltonian involving the
state k� in the superconductor.

Operators Probability

Electrons

added to S

1 �y
k�cq� u2kð1� fk�Þf0ðEk� � eVÞ þ1

2 �k�cq� v2
kfk�ð1� f0ðEk� þ eVÞÞ þ1

3 �k�c
y
q� u2kfk�ð1� f0ðEk� � eVÞÞ �1

4 �y
k�c

y
q� v2

kð1� fk�Þf0ðEk� þ eVÞ �1
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recombination of quasiparticles to Cooper pairs or inelastic
spin flips. During preparation of this work we became
aware of a similar study [17].
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