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We apply an invariant-based inverse engineering method to control, by time-dependent electric fields,

the spin dynamics in a quantum dot with spin-orbit coupling in a weak magnetic field. The designed

electric fields provide a shortcut to adiabatic processes that flip the spin rapidly, thus avoiding decoherence

effects. This approach, being robust with respect to the device-dependent noise, can open new possibilities

for spin-based quantum information processing.
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Coherent spin manipulation in quantum dots (QDs)
[1–9] is the key element in state-of-the-art spintronics
and solid-state quantum information [10,11]. Accurate
spin manipulation can be achieved by several techniques.
One of them is the conventional electron spin resonance
induced by a magnetic field oscillating at the Zeeman
transition frequency [1]. A more robust technique is the
spin manipulation with geometric Berry phases during
adiabatic motion [2,3]. Nowadays, there is also a growing
interest in the electric control of spin using spin-orbit (SO)
coupling [12]. It has been applied to high-fidelity spin
manipulation on the 100 ns time scale [7–9]. This highly
efficient all-electrical method has several advantages. For
example, it is easy to generate time-dependent electric
fields on the nanoscale by adding local electrodes and
produce spin manipulation by making them Zeeman reso-
nant [7]. As a result, Rabi spin oscillations appear at a
frequency much smaller than the Zeeman frequency, mak-
ing the flip relatively slow and prone to decoherence. We
shall propose here another all-electrical technique to flip
spin with high-fidelity via ‘‘shortcuts to adiabaticity’’ in a
time that can be much shorter than any decoherence time.

Recently, several shortcuts to adiabaticity have been put
forward to speed up the adiabatic passage of quantum
systems and achieve a robust and fast adiabaticlike control
[13–26]. The transitionless or counterdiabatic control algo-
rithms proposed by Demirplak and Rice [13], and Berry
[14], are designed to add supplementary time-dependent
interactions that cancel the diabatic couplings of a refer-
ence process. The system then follows exactly the adia-
batic trajectory of the original unperturbed process, in
principle in an arbitrarily short time. Transitionless quan-
tum drivings have been implemented in two-level systems:
spins in a magnetic field [14], atoms [15], and Bose-
Einstein condensates in optical lattices [16]. A different
shortcut is provided by inverse engineering the transient
Hamiltonian [17,18] using Lewis-Riesenfeld invariants
[27]. This method has been used for time-dependent traps
[17–21], atomic transport [22], and other applications

[23,24]. Although these two methods are potentially
equivalent [25], their implementations and results can be
quite different. Here we choose the invariant-based inverse
engineering approach, since it is better suited than the
transitionless driving to be produced by the desired all-
electrical means.
Model.— We consider the electric control of electron

spin in a QD formed by gating in the x-y plane of a two-
dimensional electron gas confined in the z direction by the
coordinate-dependent material composition, under a weak
magnetic field B0 k z, as shown in Fig. 1. Here the total
HamiltonianH of the electron interacting with the external
electric field EðtÞ ¼ �@A=c@t (with zero scalar potential)
is H ¼ H0 þHso þHint, with [12]

H0 ¼
p2
x þ p2

y

2m
þUðx; yÞ þ�z

2
�z; (1)

FIG. 1 (color online). Schematic diagram of the spin dynamics
of an electron in a gate-formed QD in the presence of electric
fields EiðtÞ and perpendicular magnetic field B0 k z axis.

PRL 109, 206602 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

16 NOVEMBER 2012

0031-9007=12=109(20)=206602(5) 206602-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.109.206602


Hso ¼ ð���y þ ��zÞpx þ ��xpy; (2)

Hint ¼ � e

c
AðtÞ � v; (3)

where m is the electron effective mass and �i (i ¼ x, y, z)
are the Pauli matrices.H0 represents the kinetic energy, the
potential Uðx; yÞ formed by lateral gates, and the Zeeman
splitting �z ¼ g�BB0, where �B is the Bohr magneton,
and g is the Landé factor. The eigenfunctions of H0 are
c jðx; yÞj�i, where j�i ¼ j � 1i is the eigenstate of �z,

and the spectrum is given by Ej ��z=2, where Ej are the

orbital eigenenergies in the confinement potential.
The SO coupling is the sum of structure-related Rashba

(�) and bulk-originated Dresselhaus (�) terms for the
[110] growth axis [28]. The vector potential AðtÞ is in the
(x, y) plane, and the corresponding spin-dependent velocity
operators are

vx ¼ i

@
½H0 þHso; x� ¼ px=mþ ��z � ��y; (4)

vy ¼ i

@
½H0 þHso; y� ¼ py=mþ ��x: (5)

We focus on the doublet �1 ¼ c 1j1i, �2 ¼ c 1j � 1i,
include the higher orbitals by Löwdin partition [29,30], and
reduce the full Hamiltonian into an effective 2� 2 one [31]:

Heff ¼ g�B

2

Z X þ iY
X� iY �Z

� �
; (6)

where X ¼ B2ð1þ �yÞ, Y ¼ ð�=�Þð1þ �xÞB1, and Z ¼
B0 þ ð1þ �xÞB1, with the effects of higher states charac-
terized by �x and �y, and the components of the designed

electric field are renormalized by the factors of 1=ð1þ �iÞ.
The effective magnetic fields are expressed with the SO
coupling parameters as B1 ¼ �2e�Ax=cg�B and B2 ¼
�2e�Ay=cg�B. The resulting electric fields are

E xðtÞ ¼ g�B

2e�

@B1

@t
; EyðtÞ ¼ g�B

2e�

@B2

@t
: (7)

In practice, some slowly varying electric fields can be
applied to drive the state from�1 to�2 adiabatically along
an instantaneous eigenstate of the Hamiltonian in Eq. (6).
To accelerate the driving using the transitionless algorithm,
counterdiabatic fields should be provided [25]. However,
the common dependence of Y and Z on B1 precludes the
implementation of the fast driving terms only by electric
fields. In contrast, invariant-based inverse engineering natu-
rally leads to an all-electrical driving.

Dynamical invariant and spin-flip example.—We shall
design the time dependence of the external electric fields
to guarantee the state transfer in some fixed time tf
by using the dynamical 2� 2 invariant IðtÞ satisfying
the condition dIðtÞ=dt � @IðtÞ=@t� ½HeffðtÞ; IðtÞ�=i@ ¼ 0.
Parametrizing the Bloch sphere (Fig. 1), by the angles � and

’, we construct yet unknownorthogonal eigenstates j��ðtÞi
of IðtÞ as

j�þðtÞi ¼
cos�2 e

i’

sin�2

 !
; j��ðtÞi ¼

sin�2

� cos�2 e
�i’

 !
:

(8)

They satisfy IðtÞj��ðtÞi ¼ ��j��ðtÞi. Introducing �� ¼
�g�BBc=2, we construct the invariant as [25]

IðtÞ ¼ g�B

2
Bc

cos� sin�ei’

sin�e�i’ � cos�

 !
; (9)

where Bc is an arbitrary constant magnetic field to keep IðtÞ
with units of energy. According to the Lewis-Riesenfeld
theory, the solution of the Schrödinger equation, i@@t� ¼
HeffðtÞ�, is a superposition of orthonormal ‘‘dynamical

modes’’ �ðtÞ ¼ P
nCne

i�nðtÞj�nðtÞi [27], where Cn are
time-independent amplitudes and �nðtÞ is the Lewis-
Riesenfeld phase:

�nðtÞ ¼ 1

@

Z t

0
h�nðt0Þji@ @

@t0
�Heffðt0Þj�nðt0Þidt0: (10)

From the invariant condition dIðtÞ=dt ¼ 0, the angles � and
’ are related to X, Y, and Z by auxiliary equations

_� ¼ 	ðX sin’� Y cos’Þ; (11)

_’ ¼ 	ðX cos’ cot�þ Y sin’ cot�� ZÞ; (12)

where	 ¼ g�B=@. SinceX is a function ofB2, while Y and
Z are functions of B1, once � and ’ are fixed, Eqs. (11) and
(12) give the effective magnetic fields

B1 ¼ �� _� cot� cos’þ �ð _’þ 	B0Þ sin’
	ð1þ �xÞð� cot�� � sin’Þ ; (13)

B2 ¼ � _� cot� sin’þ �ð _’þ 	B0Þ cos’� � _�

	ð1þ �yÞð� cot�� � sin’Þ ; (14)

from which the electric fields are calculated by using
Eq. (7). During the spin-flip process, there exist some time
instants t ¼ ts which satisfy

� cot�ðtsÞ ¼ � sin’ðtsÞ (15)

and make the denominators of B1 and B2 zero. To get rid of
such singularities, we impose the conditions

�sin’ðtsÞ½ _’ðtsÞþ	B0�ð�=�Þ _�ðtsÞcos’ðtsÞ�¼0; (16)

�cos’ðtsÞ½ _’ðtsÞþ	B0�ð�=�Þ _�ðtsÞcos’ðtsÞ�¼0; (17)

which make the numerators of B1 and B2 zero simulta-
neously. In the following example, we will show how this
works.
In general, the eigenstates of the invariant are not the

same as the instantaneous eigenstates of the Hamiltonian,
since IðtÞ andHeffðtÞ do not commute. If we impose for � at
t ¼ 0 and tf that
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�ð0Þ ¼ 0; �ðtfÞ ¼ 
; _�ð0Þ ¼ 0; _�ðtfÞ ¼ 0;

(18)

then ½Heffð0Þ; Ið0Þ� ¼ 0 and ½HeffðtfÞ; IðtfÞ� ¼ 0, which

guarantees common eigenstates at initial and final times.
Moreover, the state obeying Eq. (18) will flip from j�1i at
t ¼ 0 to j�2i at t ¼ tf, up to phase factors, along the

eigenstate j�þðtÞi. To design the trajectory at intermediate
times, we assume the polynomial Ansatz � ¼ P3

j¼0 ajt
j,

where the aj can be fixed by solving the system implied by

Eq. (18). This leads to �ðtf=2Þ ¼ 
=2, so cot� covers the

whole (�1, 1) range passing through zero at t ¼ tf=2.

This leads to one or several times satisfying Eq. (15), as we
will see below in more detail.

To determine j�þðtÞi fully, we also need the trajectory
for ’. As the initial and final states are the poles of the
Bloch sphere, the phase ’ is not well defined there. We
may nevertheless specify how the trajectory approaches
them and impose limits from the right at t ¼ 0 and from the
left at t ¼ tf, for example,

’ð0þÞ ¼ 
=2; ’ðt�f Þ ¼ 
=2: (19)

These conditions are not sufficient, though, since we still
have to deal with the singularities and their cancellation.
As cot�ðtf=2Þ ¼ 0, we may satisfy Eq. (15) and impose

zeros of the denominators for B1;2 at ts ¼ tf=2, if

sin’ðtf=2Þ ¼ 0. Imposing the two conditions

’ðtf=2Þ ¼ 0; (20)

_’ðtf=2Þ ¼ ð�=�Þ _�ðtf=2Þ � 	B0; (21)

to satisfy Eqs. (16) and (17) at ts ¼ tf=2, we cancel the

singularity there. With the conditions in Eqs. (19)–(21), we
solve the third-order polynomial Ansatz ’ ¼ P

3
j¼0 bjt

j to

determine ’ðtÞ.
Explicit calculations demonstrate that for the third-order

polynomial Ansatz and boundary conditions imposed here,
there is only one (removable) singularity at ts ¼ tf=2when

the field B0 is smaller than a certain upper limit Bmax
0 ,

shown in Fig. 2 as a function of tf. For B0 > Bmax
0 , more

solutions of (15) appear [B0 and sin’ðtÞ are coupled by
Eq. (21)], which cannot be canceled with the third-order
polynomial. To satisfy Eqs. (16) and (17) at more than one
zero of the denominators of B1;2, one may set higher order

polynomials for ’ and further conditions. This increases
the bound Bmax

0 but also complicates the driving fields.

In the present examples, we just apply the third-order
polynomial Ansatz with the boundary conditions in
Eqs. (18)–(21), so that the applied magnetic field B0 should
not go beyond the upper limit in Fig. 2. As the upper limit
field grows for smaller times tf, this is not a problem in

practice. Figure 3 shows examples of spin flip for different
values of B0.

With the functions � and ’ fixed [see Fig. 3(a)], the
designed electric fields ExðtÞ and EyðtÞ, corresponding to

B0 ¼ 0:01 T and B0 ¼ 0:07 T (close to the upper limit),
are depicted in Figs. 3(b) and 3(c). The populations (not
shown) of the two spin states, given by P1 ¼ cos2ð�=2Þ and
P�1 ¼ sin2ð�=2Þ, cross each other smoothly as � goes
from 0 to 
. The choice of B0 determines the trajectory
on the Bloch sphere for a given tf. When B0 approaches the

upper limit, the electric fields exhibit sharp peaks; see
Fig. 3(c). The smooth time dependence in Fig. 3(b) is
well suited for applications, while the complicated depen-
dence in Fig. 3(c) should be avoided. Undesirable excita-
tion of the orbital modes does not occur here, since the spin
flip tf � 1 ns, while the energy split of the orbital states in

typical QDs exceeds 0.1 meV. Therefore, regarding the
orbital motion, our perturbation is strongly adiabatic, and
no orbital excitation occurs.
To check the stability with respect to initialization errors,

we assume now the initial state as ð ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
ei’0 ;

ffiffiffi
�

p ÞT
with an arbitrary phase ’0 and find � and ’ from
Eqs. (11) and (12) for the same designed electric fields
(Fig. 4). The final value �ðtfÞ depends on the error � but is

insensitive to the initial phase ’0, while ’ðtfÞ is sensitive
to both initial conditions. Since our goal is to realize the
spin flip, the final ’ is irrelevant, and the experimental
effort should focus on achieving a small error �.
Decoherence and noise effects.— To show the feasibility

of our approach, we study the effects of noise and decoher-
ence on the spin-flip fidelity. We begin with a generic
approach for coupling to the incoherent environment,
based on the conventional Lindblad formalism as can arise,
e.g., from interaction with the conduction electron bath
under Born and Markov approximations. The master equa-
tion reads [32]

_� ¼ � i

@
½Heff ; �� � 

2

X
i

½�i; ½�i; ���; (22)

where  is the dephasing rate. We introduce the
Bloch vector with components u ¼ �1�1 þ ��11,

FIG. 2 (color online). Dependence of the maximum of applied
magnetic field Bmax

0 (solid blue line) on the time tf for a third-

order polynomial Ansatz for � and ’, with the parameters @� ¼
2� 10�6 meV � cm, � ¼ �=2, and g ¼ �0:44 for GaAs. B0 ¼
0:005 T (dashed red line) corresponds to �z ¼ 1:5 mK.
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v ¼ �ið�1�1 � ��11Þ, and w ¼ �11 � ��1�1 and obtain
from Eq. (22)

_u
_v
_w

0
@

1
A ¼

�4 	Z �	Y
�	Z �4 	X
	Y �	X �4

0
@

1
A u

v
w

0
@

1
A: (23)

We solve Eq. (23) numerically and calculate fidelity
F ¼ jh�1j�ðtfÞij; see Fig. 5. For tf � 1 the time-

dependent perturbation theory [21] yields the bound F *

1� 2tf. Since the induced flip occurs very fast, it can

overcome the main danger for the low-temperature spin
manipulation in QDs coming from the hyperfine coupling
to the nuclear spins, where the decoherence times exceed
100 ns [7].

Another source of decoherence is the device-dependent
noise in the electric field acting on the spin. This can be
important when the relatively weak electric fields in
Fig. 3(b) are applied. We analyze in detail the effect of
this noise and find that our method is robust to this random-
ness in Ref. [33].
Conclusions and outlook.—We have proposed a fast and

robust method to flip electron spin in a QD with SO
coupling and a weak perpendicular magnetic field. The
spin-flip process, designed by Lewis-Riesenfeld invariants,
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FIG. 4 (color online). Time evolution of cos� (a) and sin’
(b) for the same Hamiltonian with the designed electric fields
and B0 ¼ 0:01 T, where � ¼ 0, ’0 ¼ 
=2 (solid blue line); � ¼
0:01, ’0 ¼ 
=2 (dashed red line); and � ¼ 0:01, ’0 ¼ 
=4
(dot-dashed black line). Other parameters are the same as in
Fig. 3.

FIG. 5 (color online). Fidelity as a function of  for different
times tf ¼ 0:1 ns (solid red line) and tf ¼ 1 ns (dotted black

line). The fidelity estimated from perturbation theory is also
compared, for tf ¼ 0:1 ns (dashed blue line, undistinguished)

and tf ¼ 1 ns (dot-dashed orange line). B0 ¼ 0:01 T and other

parameters are the same as in Fig. 2.

FIG. 3 (color online). For tf ¼ 1 ns, (a) polynomial Ansätze of
auxiliary angles � ¼ P

3
j¼0 ajt

j (solid blue line), ’ ¼ P
3
j¼0 bjt

j

with B0 ¼ 0:01 T (dashed red line), and B0 ¼ 0:07 T (dotted
black line). The designed electric fields Ex (solid blue line) and
Ey (dashed red line) by which spin flip can be realized for B0 ¼
0:01 T (b) and B0 ¼ 0:07 T (c). Other parameters are the same
as those in Fig. 2. For simplicity, we put here �x ¼ �y ¼ 0 to

skip the trivial dependence on these factors.
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is faster than the decoherence for any known low-
temperature dephasing mechanism. This method can be
further complemented by optimal control theory for time
and energy minimization subjected to different physical
constraints [34]. Implementation of this technique will
allow for high-fidelity spin manipulation for quantum in-
formation processing.

We acknowledge funding by the Basque Country
Government (Grants No. IT472-10 and No. BFI-2010-
255), Ministerio de Ciencia e Innovacion (Grant
No. FIS2009-12773-C02-01), UPV/EHU program UFI
11/55, National Natural Science Foundation of China
(Grant No. 61176118), and Shanghai Rising-Star
Program (Grant No. 12QH1400800).

[1] F. H. L. Koppens, C. Buizert, K. J. Tielrooij, I. T. Vink,
K. C. Nowack, T. Meunier, L. P. Kouwenhoven, and
L.M.K. Vandersypen, Nature (London) 442, 766 (2006).

[2] P. San-Jose, B. Scharfenberger, G. Schön, A. Shnirman,
and G. Zarand, Phys. Rev. B 77, 045305 (2008).

[3] S. Prabhakar, J. Raynolds, A. Inomata, and R. Melnik,
Phys. Rev. B 82, 195306 (2010).

[4] A. Greilich, S. G. Carter, D. Kim, L. S. Bracker, and D.
Gammon, Nature Photon. 5, 702 (2011).

[5] T.M. Godden, J. H. Quilter, A. J. Ramsay, Y.W. Wu, P.
Brereton, S. J. Boyle, I. J. Luxmoore, J. Puebla-Nunez,
A.M. Fox, and M. S. Skolnick, Phys. Rev. Lett. 108,
017402 (2012).

[6] K. De Greve, Nat. Phys. 7, 872 (2011).
[7] K. C. Nowack, F. H. L. Koppens, Yu. V. Nazarov, and

L.M.K. Vandersypen, Science 318, 1430 (2007).
[8] J. R. Petta, H. Lu, and A. C. Gossard, Science 327, 669

(2010).
[9] A. Boyer de la Giroday, A. J. Bennett, M.A. Pooley, R.M.
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