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We show that a time-dependent magnetic field inducing a periodically modulated scattering length may

lead to interesting novel scenarios for cold gases in optical lattices, characterized by a nonlinear hopping

depending on the number difference at neighboring sites. We discuss the rich physics introduced by this

hopping, including pair superfluidity, exactly defect-free Mott-insulator states for finite hopping, and pure

holon and doublon superfluids. We also address experimental detection, showing that the introduced

nonlinear hopping may lead in harmonically trapped gases to abrupt drops in the density profile marking

the interface between different superfluid regions.
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Ultracold atoms in optical lattices formed by laser
beams provide an excellent environment for studying lat-
tice models of general relevance in condensed-matter
physics, and in particular, variations of the celebrated
Hubbard model [1,2]. Cold lattice gases allow for an
unprecedented degree of control of various experimental
parameters, even in real time. In particular, interparticle
interactions can be changed by means of Feshbach reso-
nances [3]. Moreover, recent milestone achievements
allow for site-resolved detection, permitting the study of
in situ densities [4,5], and more involved measurements, as
that of nonlocal parity order [6].

The modulation of the lattice parameters in real time
opens interesting possibilities of control and quantum
engineering. In particular, a periodic lattice shaking trans-
lates by means of Floquet’s theorem [7,8] into a modified
hopping constant [9], which may even reverse its sign as
shown in experiments [10,11]. This technique has been
employed to drive the Mott-insulator (MI) to superfluid
(SF) transition [12], and to simulate frustrated classical
magnetism [13]. Recent experiments have explored as well
the fascinating perspectives offered by periodically driven
lattices in strongly correlated gases [14,15].

The effective Hubbard-like models describing ultracold
lattice gases are typically characterized by a hopping in-
dependent of the number of particles at the sites. This
is, however, not necessarily the case. Multiband physics
[16–18] and dipolar interactions for sufficiently large di-
pole moments [19] may lead to occupation-dependent
hopping. A major consequence of nonlinear hopping is
the possibility to observe pair superfluidity (PSF) [19,20],
which resembles pairing in SF Fermi gases, although for
bosons superfluidity exists as well without pairing.

In this Letter, we consider a cold lattice gas in the
presence of a periodically modulated magnetic field. In
the vicinity of a Feshbach resonance, this field induces
modulated interparticle interactions [21]. Interestingly,
Ref. [22] has shown that periodic modulations of the
interaction strength may lead to a many-body coherent

destruction of tunneling in two-mode Bose-Einstein con-
densates. As shown below, the generalization of this effect
to lattice gases leads under proper conditions to an effec-
tive Hubbard-like model with a nonlinear hopping which,
in contrast to other proposals mentioned above, depends on
the difference of occupations at neighboring sites, and
retains its nonlinear character even for weak lattices. We
discuss the rich physics introduced by this hopping, includ-
ing pair superfluid phases, exactly defect-free MI states for
finite hopping, and pure holon and doublon superfluids. We
also address experimental detection, showing that the
studied nonlinear hopping may lead to abrupt drops in
the density profile of harmonically trapped gases.
We consider bosons in a lattice in the presence of a

periodically modulated magnetic field BðtÞ ¼ Bðtþ TÞ
(with period T ¼ 2�=!) chosen close to a Feshbach reso-
nance, where the s-wave scattering length acquires

the form aðtÞ ¼ abgð1� �B
BðtÞ�Br

Þ ¼ a0 þP
l>0al cosðl!tÞ.

Here �B and Br determine the width and position of the
resonance, respectively, and abg is the background scatter-

ing length [3]. Assuming that the gap between the first
two lattice bands is much larger than any other energy
scale in the problem, we consider only the lowest band
and describe the system by a Bose-Hubbard model
(BHM) [1,2]:

HðtÞ ¼ �J
X

hiji
byi bj þ

UðtÞ
2

X

i

n̂iðn̂i � 1Þ �X

i

�n̂i; (1)

where bi (b
y
i ) is the bosonic annihilation (creation) opera-

tor at site i, n̂i ¼ byi bi,� is the chemical potential, J > 0 is
the hopping rate, and h::i denotes nearest neighbors.
Interactions are characterized by a coupling UðtÞ ¼
U0 þ

P
l>0Ul cosðl!tÞ ¼ U0 þ ~UðtÞ, with U0 > 0 and

Ul ¼ 4�@2al
M

R
d3rjwðrÞj4. Here wðrÞ is the lowest

Wannier function and M is the atomic mass.
We apply a similar analysis as the one used for shaken

lattices [9]. We specify a Floquet basis
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jfnjg; mi ¼ eim!te
�ðiVðtÞ=2ÞP

j
n̂jðn̂j�1Þjfnjgi; (2)

where m defines the Floquet sectors and jfnjgi is the Fock
basis, characterized by the atom number at each site. In
Eq. (2), we defined VðtÞ ¼ R

t ~Uðt0Þdt0=@. We introduce the

time-averaged scalar product hhfn0jg; m0j . . . jfnjg; mii ¼
1
T

R
T
0 hfn0jg; m0j . . . jfnjg; mi, and establish the matrix

elements:

hhfn0jg; m0j½HðtÞ � i@@t�jfnjg; mii
¼ �m;m0 hfn0jgjHmjfnjgi

� J
X

hi;ji
hfn0jgjbyi Fm0�mðn̂i � n̂jÞbjjfnjgi; (3)

with Hm¼m@!þU0

2

P
jn̂jðn̂j�1Þ�P

j�n̂j and FmðxÞ ¼
1
T

R
T
0 dte

�imteiVðtÞx. If @! � J, U0, we may restrict to a

single Floquet sectorm ¼ 0, resulting in an effective time-
independent Hamiltonian of the form

Heff ¼�J
X

hiji
byi F0ðn̂i� n̂jÞbjþU0

2

X

i

n̂iðn̂i�1Þ��
X

i

n̂i:

(4)

Hence, interactions with a periodic modulation result in a
nonlinear hopping term, which depends on the atom num-
ber difference between neighboring sites. Note that this
nonlinear character remains relevant for any value of the
bare hopping J. In the following we discuss the specific
case ~UðtÞ ¼ U1 cos!t. In this case, F0ðxÞ ¼ J 0ð�xÞ, with
J 0 the Bessel function and � ¼ U1=@!, generalizing the
result of Ref. [22] for two-well Bose-Einstein condensates.

Insight into Eq. (4) is gained by means of a Gutzwiller
ansatz (GA) for the ground state [23], jGi ¼
Q

j

P
n fnðjÞjnji, where fnðjÞ are variational parameters

[
P

njfnðjÞj2 ¼ 1], determined by minimizing hGjHeffjGi.
Results obtained by choosing homogeneous real fnðjÞ ¼ fn

[24] are shown in Fig. 1 (left), where we depict the mean-
field phase diagram for � ¼ 4 [J 0ð�Þ ’ �0:4] as a func-
tion of �=U0 and zJ=U0, with z the coordination number.
As usual, MI phases are characterized by integer hn̂ii, and
vanishing single-particle- and pair-condensation fractions,
�1 � jhbiij2=hn̂ii and �2 ¼ jhb2i ij2=hn̂ii2. The superfluid

regime may be split into two different phases separated by
a crossover: a usual bosonic superfluid, characterized by a
dominant single-particle condensation, �1 > �2 > 0, and a
pair superfluid, where pair-condensation dominates, �2 >
�1 � 0. Pair superfluidity is especially pronounced in the
vicinity of integer hn̂ii, where hbii ¼ 0. Our GA results
show that PSF only occurs if J 0ð�Þ< 0. This may be
understood by considering integer hn̂i ¼ n, and restricting

the variational space to fn�1 ¼ sin�ffiffi
2

p ei’� and fn ¼ cos�.

For J 0ð�Þ< 0, energy minimization gives �’ �
’þ þ ’� ¼ �, while �’ ¼ 0 for J 0ð�Þ> 0. As a result,

for 2Jz=U0 � 1, PSF demands ðnþ 1Þ> 2ð ffiffiffi
n

p þ
sgnðJ 0ð�ÞÞ ffiffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p Þ2, which is only fulfilled ifJ 0ð�Þ< 0.

To complement the mean-field GA results, we have also
employed numerically exact methods in one dimension. In
particular, we used the density-matrix renormalization
group (DMRG) [25] with up to 40 sites and keeping 200
states, and a related method, the infinite time-evolving
block decimation (iTEBD) method [26] using a Schmidt
dimension of 200. We have monitored the behavior of

single-particle and pair correlations, G1ði; jÞ � hbyi bji
and G2ði; jÞ � hðbyi Þ2b2j i, respectively. Both decay expo-

nentially in the Mott insulator. For both the PSF and SF
regions, both G1 and G2 have a power-law decay [27], but
in the PSF G2 decays slower than G1. The opposite char-
acterizes the SF phase. Figure 1 (right) shows the one-
dimensional phase diagram for � ¼ 4, which closely
resembles the one obtained using GA. Similar to the GA,
we observe a pair superfluid phase, which for integer hn̂i
approaches all the way to the tip of the MI lobes. Away
from the lobe tips we observe a direct MI-SF transition.
Our one-dimensional results also confirm the absence of
PSF for J 0ð�Þ> 0.
The caseJ 0ð�Þ ¼ 0 is particularly interesting, since for

neighboring sites i and j with equal number of particles,
the process jniijnij ! jn� 1iijn� 1ij is forbidden.

However, the hopping jn� 1iijnij ! jniijn� 1ij is still

characterized by the usual rate J. This difference has a
remarkable impact for both the MI and the SF phases.
For J ¼ 0, the ground state of Eq. (4) is, as for the

standard BHM (� ¼ 0), a defect-free MI
N

j jnij for

n� 1<�=U0 < n [28]. For � ¼ 0 and J > 0, this state
is not an eigenstate of Eq. (4), and quantum fluctuations
induce a finite particle-hole population in the Mott insula-
tor with an associated nonlocal parity order [6].
Interestingly, the defect-free state remains an eigenstate
of Eq. (4) for J 0ð�Þ ¼ 0. As a result, the whole MI lobe is
characterized by the absence of particle-hole defects.
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FIG. 1 (color online). Phase diagram for � ¼ 4 using the GA
(left) and the DMRG (right). Solid curves define the MI lobes,
whereas dashed curves are the SF-PSF boundaries. The black
dotted line indicates hbii ¼ 0.

PRL 109, 203005 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

16 NOVEMBER 2012

203005-2



Although this is typically an artifact in the mean-field
GA, in this case it is an exact result for any dimensions.
This is illustrated for the one-dimensional case in Fig. 2,
where our iTEBD results show a vanishing variance
ð�nÞ2 ¼ hn̂2i � hn̂i2 within the whole Mott insulator. A
defect-free Mott insulator may be revealed by parity-order
measurements using site-resolved techniques [6]. Whereas
for the standard BHM doublon-hole pairs reduce parity
order, a defect-free Mott insulator results in unit parity in
the whole Mott phase.

Conversely, particles or holes (jn� 1i) on top of the
state

N
jjnij acquire also remarkable properties. For any

�, extra particles and holes move with a hopping rate
ðnþ 1ÞJ and nJ, respectively. For � ¼ 0 defects are
unstable, being created and destroyed by processes
jniijnij $ jn� 1iijn� 1ij. Since these processes are for-
bidden for J 0ð�Þ ¼ 0, defects remain stable [29].
Neglecting occupations other than n and n� 1, the defects
are described by an effective HamiltonianHh þHp, where

Hh ¼ �Jn
X

hi;ji
hyi hj þ ð��U0ðn� 1ÞÞX

i

hyi hi; (5)

Hp ¼ �Jðnþ 1ÞX
hi;ji

py
i pj þ ðU0n��ÞX

i

py
i pi; (6)

characterize, respectively, the physics of holes and parti-

cles, with the hard-core assumption py
i pi þ hyi hi ¼ 0 or 1,

with hi (pi) the operators for extra holes (particles) at site i.
In Eqs. (5) and (6) we have set the energy of the defect-free
MI state EMI ¼ 0. Thus the system behaves as a two-
component hard-core lattice Bose gas. For higher dimen-
sions, a dilute gas of extra holes (holon gas) may be
considered as a basically free (superfluid) Bose gas, with
a dispersion EhðqÞ ¼ ��U0ðn� 1Þ þ n�0q, where �0q ¼
�2J

P
j¼x;y;z cosðqjdÞ for a three dimensional cubic lattice

and d is the lattice spacing. On the other hand, the dilute
gas of extra particles (‘‘doublon’’ gas [30]) has a dispersion
EpðqÞ ¼ U0n��þ ðnþ 1Þ�0q.

At zero temperature, the defect gas condenses for �<
�c � U0ðn� 1=2Þ � Jz at the bottom of the holon band,
Ehð0Þ, acquiring a pure holon character. On the other hand,
for �>�c the system condenses at Epð0Þ into a pure

doublon gas. Hence, remarkably, we expect an abrupt
jump of hn̂i (i.e., a diverging compressibility) at the line
� ¼ �c, which coincides with the line of integer hn̂i ¼ n.
Figure 3 depicts our GA results for the density as a function
of �=U0 and J=U0, which, as expected from the previous
discussion, presents an abrupt jump between a holon and a
doublon superfluid.
In one dimension, the defects behave, due to the hard-

core constraint, rather as a two-component Tonks gas, but a
similar two-band reasoning applies, and we may also
expect the existence of pure holon and doublon superfluids.
Figure 2 shows our iTEBD results in the vicinity of hn̂i ¼ 1

for the holon (doublon) populations hP̂0i (hP̂2i), with

P̂n ¼
Q

n0�nðn̂� n0Þ=ðn� n0Þ. In addition to the Mott in-

sulator characterized by hP̂0;2i¼0, we observe a holon SF

(hP̂2i¼0) and an abrupt jump to a doublon SF (hP̂0i¼0).
Note that a pure doublon SF or holon SF excludes PSF.
At constant � for J 0ð�Þ ¼ 0 the system undergoes a

MI-doublon (holon) SF transition at a critical tunneling
Jcð�Þ for which EpðhÞð0Þ ¼ EMI. On the contrary, at con-

stant integer hn̂i, there is no one-dimensional MI-SF tran-
sition at finite hopping J. Due to the absence of processes
jniijnij $ jn� 1iijn� 1ij, doublons and holons cannot

swap their positions through second-order superexchange.
As a result, if holons and doublons coexist (which only
happens at the singular integer filling line), superfluidity is
absent. Our DMRG results for hn̂i ¼ 1 confirm this insu-
lating character for any J, showing a clear transition
between a defect-free insulator and an insulator with a
finite defect density.
For a finite but small J 0ð�Þ, the SF regions retain to

a large extent their holon and doublon character, although
the concentration of doublons in the holon SF and holons
in the doublon SF increases for growing J 0ð�Þ and J.
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FIG. 2 (color online). iTEBD results for the holon (circles) and
doublon (squares) populations as a function of J=U0 for a one-
dimensional system with �=U0 ¼ 0:3 and � ¼ 2:405. Note the
absence of defects in the Mott insulator (J=U0 < 0:15), and the
appearance of the holon SF (H-SF) and doublon SF (D-SF).

FIG. 3 (color online). Homogeneous GA results for hn̂i as a
function of J=U0 and �=U0 for � ¼ 2:405. The solid red lines
denote the boundary of the Mott insulator and the line of integer
filling 1. Note the abrupt jump in the density at that line,
indicating the transition between the holon SF and doublon SF
regimes.
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The coexistence region for holons and doublons is hence
not any more singular, although it remains characterized by
a large compressibility for small J 0ð�Þ. For J 0ð�Þ< 0
this coexistence region becomes the pair superfluid phase
discussed above. Away from the Mott tip a direct MI-SF
transition is observed, as discussed above, since at the MI
boundary holons and doublons do not coexist.

Let us finally discuss some experimental questions.
Optimal experimental conditions for periodically modu-
lated interactions are provided by 85Rb, which has a par-
ticularly large abg ’ �400aB (with aB the Bohr radius),

and a broad Feshbach resonance at Br ¼ 155:2 G, with a
width �B ¼ 11:6 G [31]. The desired form aðtÞ � a0 þ
a1 cosð!tÞ can be achieved for a magnetic field depen-
dence BðtÞ=G ’ 167:56þ 5:58 cosð!tÞ, with a0 � 20aB
and a1 � 200aB. We consider a lattice spacing d ¼
0:5 �m, and potential depth VL ¼ sER, where ER ¼
@
2�2=2Md2 is the recoil energy. For s � 17 (J 	 U0),

the value � ¼ 2:4 (J 0ð�Þ ’ 0) is obtained for ! ’
2�
 900 Hz � U0=@ ¼ 2�
 217 Hz, ensuring that
only one Floquet manifold is relevant [32].

In order to address the question of detection, we have to
consider the transformation [Eq. (2)] between the Floquet
jfnjg; mi and the Fock jfnjgi basis. The densities hn̂ii are
equivalent in both; therefore, the large compressibility
regions characteristic of jJ 0ð�Þj ’ 0 may be revealed in
in situ experiments with an additional harmonic confine-
ment. This is illustrated in Fig. 4, where we show inhomo-
geneous GA results for a harmonic trap in two dimensions.
As expected from the local-density approximation, we
observe an abrupt density jump when the local chemical
potential crosses its critical value.

Interpretation of other observables, as, e.g., the momen-
tum distribution in time-of-flight (TOF) measurements,

may be more involved, since hfn0jgjbyi bjjfnjgi �
e�iVðtÞðni�njþ1Þhfn0jg; mjbyi bjjfnjg; mi. However, for the

holon SF and doublon SF phases the TOF measurement
is almost time-independent for small jJ 0ð�Þj. Indeed this
weak dependence is in itself a proof of the holon or
doublon character of the SF. For large jJ 0ð�Þj the non-
linear conversion is an issue, and in general measurement
results are periodic.
In summary, periodically modulated interactions lead to

a rich physics for cold gases in optical lattices, character-
ized by a nonlinear hopping depending on the number
difference at neighboring sites. This hopping can lead to
pair superfluid phases, and also to defect-free Mott states,
and holon and doublon superfluids, which may be revealed
by parity measurements and by abrupt jumps of the in situ
densities in harmonically trapped lattice gases.
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