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We apply the sum-over-states approach to calculate partial contributions to parity nonconservation

(PNC) in cesium [Porsev, Beloy, and Drevianko, Phys. Rev. Lett. 102, 181601 (2009)]. We find significant

corrections to two nondominating terms coming from the contribution of the core and highly excited states

(n > 9, the so called tail). When these differences are taken into account the result of Porsev et al.,

EPNC ¼ 0:8906ð24Þ � 10�11ið�QW=NÞ changes to 0.8977 (40), coming into good agreement with our

previous calculations, 0.8980 (45). The interpretation of the PNC measurements in cesium still indicates

reasonable agreement with the standard model (1:5�); however, it gives new constraints on physics

beyond it.

DOI: 10.1103/PhysRevLett.109.203003 PACS numbers: 31.30.�i, 11.30.Er, 31.15.A�

Introduction.—The search for new physics beyond the
standard model using parity nonconservation (PNC) in
atoms culminated in 1997 when the Boulder group
reported very accurate measurements of the PNC 6s-7s
amplitude in cesium [1]. The experimental uncertainty was
only 0.35%. The interpretation of the measurements based
on early calculations by the Novosibirsk [2] and Notre
Dame [3] groups indicated good agreement with the stan-
dard model. However, the declared theoretical accuracy of
these early calculations (1%) did not match the accuracy of
the measurements. Bennett and Wieman reanalyzed the
accuracy of the calculations by comparing calculated
observables with new experimental data [4]. They pointed
out that many discrepancies between theory and experi-
ment were resolved in favor of theory and suggested that
the actual accuracy of the calculations [2,3] was 0.4%. This
led to about a 2:3� deviation of the value of the weak
charge of the cesium nucleus from the prediction of the
standard model. The discrepancies were resolved when
Breit [5,6] and radiative (see, e.g., Ref. [7] and references
therein) corrections were included in the calculations. On
the other hand, new calculations of the correlations [8,9]
did not change the old results of Refs. [2,3] and rather
confirmed the suggestion made in Ref. [4] that their accu-
racy was high. The new value of the weak nuclear charge
was about 1� smaller than the prediction of the standard
model, which should be considered as good agreement.

The situation changed when the latest, most sophisti-
cated calculations of the PNC in Cs were reported by
Porsev et al. [10]. The authors of this work used the
sum-over-states approach and applied the coupled cluster
with single, double, and valence triple excitations for the
leading terms in the sum. They claimed a 0.27% uncer-
tainty for the calculations while their correlated PNC
amplitude was about 0.9% smaller than in previous calcu-
lations. This led to perfect agreement with the standard
model, with central points for the weak nuclear charge
extracted from the measurements and predicted by the

standard model coinciding exactly: QWð133CsÞ ¼
�73:16ð29Þexpð20Þtheor and QSM

W ð133CsÞ ¼ �73:16ð3Þ
[10]. The smaller value of the correlated PNC amplitude
is attributed in Ref. [10] to the role of higher-order
correlations.
Although all old and new calculations of the PNC in Cs

lead to agreement with the standard model, the results of
Ref. [10] have important implications imposing strong
constraints on new physics beyond the standard model.
Therefore, it is worth studying further the reasons for the
difference in the calculations.
The authors of Ref. [10] paid a great deal of attention to

the leading terms, performing very sophisticated calcula-
tions for them and demonstrating high accuracy by com-
paring them with available experimental data. The
uncertainty for the minor terms was assumed to be 10%
based on the spread of the values in different approxima-
tions. The sum-over-states approach used in Ref. [10] has
an important shortcoming. The calculation of each term in
the sum is practically independent of the others and there-
fore the high accuracy for the leading terms does not
guarantee high accuracy for the sum.
In this Letter we use the sum-over-states approach to

study possible reasons for the difference between the
results of Ref. [10] and previous calculations [2,9]. We
assume that the main term was calculated correctly in
Ref. [10] and focus our attention on the minor terms such
as the contribution of the core states and highly excited
(tail) states. We include core polarization and correlation
corrections into the core and tail contributions and find a
significant difference for both of these terms between our
calculations and those reported in Ref. [10]. Our core
contribution has a different sign while being similar in
value. We have agreement with Ref. [10] for the tail
contribution when only core polarization effects are taken
into account. However, further inclusion of Bruekner-type
correlations increases the PNC amplitude beyond the 10%
uncertainty for the tail assumed in Ref. [10].
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If the core and tail contributions of Ref. [10] are replaced
by the findings of the present work, the resulting PNC
amplitude comes into excellent agreement with previous
calculations. The application of our calculations to the
analysis of the PNC measurements in Cs leads to a value
of weak nuclear charge that is about 1:5� smaller than the
value predicted by the standard model. While the PNC
amplitude found in this work is practically the same as in
Refs. [7,9], the apparent increase in the deviation from the
standard model (1� in Refs. [7,9] when the proper values
of the Breit, radiative, and neutron skin corrections are
added) is due to smaller uncertainty. This smaller uncer-
tainty is mostly due to the small uncertainty of the main
term, which we have taken from Ref. [10] without
reanalysis.

The PNC amplitude calculated in this work gives new
constraints on physics beyond the standard model.

Calculations.—The PNC amplitude of an electric dipole
transition between the 6s and 7s states of cesium can be
written as

EPNC ¼ X

n

�h6sjHPNCjnp1=2ihnp1=2jdj7si
E6s � Enp1=2

þ h6sjdjnp1=2ihnp1=2jHPNCj7si
E7s � Enp1=2

�
; (1)

where d ¼ �e
P

iri is the electric dipole operator, HPNC is
the operator of a P-odd CP-even weak interaction

HPNC ¼ � GF

2
ffiffiffi
2

p QW�5�ðrÞ; (2)

GF � 2:2225� 10�14 a:u: is the Fermi constant of the
weak interaction, and QW is the nuclear weak charge.

Equation (1) is exact if states 6s, 7s, np1=2 label many-

electron physical states of the atom. Then 6s is the ground
state and the summation goes over the excited states of
the opposite parity and the same total angular momentum
J ¼ 1=2. In practical calculations Eq. (1) is reduced to one
with single-electron orbitals and single-electron matrix
elements. It looks very similar to Eq. (1) but with a few
important differences: (a) All states (6s, 7s, np1=2) are now

single-electron states obtained with the use of the Hartree-
Fock method. (b) Many-electron effects are reduced to the
redefinition of the single-electron orbitals and interaction
Hamiltonians. For example, the inclusion of the core po-
larization effect leads to redefinition of the interaction
Hamiltonian. For the weak interaction we have H0

PNC ¼
HPNC þ �VPNC, where �VPNC is the correction to the self-
consistent potential of the atomic core due to the effect of
the weak interaction HPNC. For the electric dipole interac-
tion we have a similar expression d0 ¼ dþ �Vd. (c) The
summation in Eq. (1) now goes over the complete set of
single-electron states including states in the core.
Extending the summation to the core states corresponds
to inclusion of highly excited autoionizing states. (d) The

expression of Eq. (1) via single-electron states is approxi-
mate. Its accuracy is determined by how the many-body
effects are included.
Equation (1) implies the sum-over-states approach

which we are going to study in this Letter. As mentioned
above, high accuracy for the leading terms does not guar-
antee high accuracy for the sum. To test the total sum we
use an alternative approach which we have used in our
previous PNC calculations [2,9]. This approach is based on
the solving of differential equations.
The PNC amplitude [Eq. (1)] can be rewritten as

EPNC ¼ h�c 6sjdjc 7si þ hc 6sjdj�c 7si; (3)

where the c and �c are single-electron orbitals and �c a

is the correction to the wave function c a due to the weak
interaction

�c a ¼
X

n

hajH0
PNCjnp1=2i

Ea � Enp1=2

hnp1=2j: (4)

It is easy to see that this correction to the wave function
satisfies the differential equation

ðĤ0 � EaÞ�c a ¼ �H0
PNCc a: (5)

Here c a is the eigenstate of the Ĥ0 Hamiltonian, which is
in our case the relativistic Hartree-Fock Hamiltonian. The
left-hand side of Eq. (5) has the form of the relativistic
Hartree-Fock equation. However, the energy is fixed and
there is also the right-hand side. Solving the differential
equation [Eq. (5)] for the 6s and 7s states of cesium and
using Eq. (3) to calculate the PNC amplitude does not
require a complete set of single-electron states. To find
partial contributions of selected states one needs to impose
orthogonality conditions for �c a to these states. This
method is numerically more stable than the sum-over-
states approach. In the present work we use it as an
independent test of the calculations. The difference
between the two approaches for the partial contributions
is less than 0.01% of the the total PNC amplitude.
To perform the summation in Eq. (1) we use the B-spline

basis set first presented in Ref. [11]. We use 100 B splines
in each partial wave in the cavity of radius 75 aB. The
cavity radius is taken to be the same as in Ref. [10]. Its
value is dictated by the need to have the dominating states
as close to physical (spectroscopic) states as possible. The
most important intermediate states, according to Ref. [10],
are the 6p1=2, 7p1=2, 8p1=2, and 9p1=2 states. The value

Rmax ¼ 75aB is large enough for the 9p1=2 to be a physical

state. The number of splines is chosen to be sufficiently
large to saturate the summation. It turns out that saturation
is achieved at approximately 80 B splines (in Ref. [10] the
authors used 40 B splines of a different type).
To compare the tail terms in different calculations, the

basis sets must satisfy two conditions. First, the box size
and number of splines must be large enough for accurate
approximation of all the atomic states entering the main
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term so that these states can be associated with real physi-
cal states. Second, the basis must be complete. For all basis
sets which satisfy both of these conditions the tail does not
depend on the basis. We believe that both our basis and that
used in Ref. [10] satisfy these conditions.

We include two types of correlations, the core polariza-
tion effect and Brueckner type correlations [12]. The core
polarization is the effect of the change in the self-consistent
Hartree-Fock potential due to an external field. In our case
we have two types of external fields, the electric dipole
field of the external photon and the weak interaction of
atomic electrons with the nucleus. As we mentioned above,
the inclusion of the core polarization is reduced to a
redefinition of the interaction Hamiltonians (plus the small
‘‘electroweak’’ corrections considered in Refs. [2,9,12]). It
is done in the framework of the random phase approxima-
tion (RPA).

The Brueckner type correlations describe the correlation
interaction of the external electron with the atomic core,
which can be reduced to redefinition of the single-electron
orbitals, constructing the Brueckner orbitals [12]. For this

purpose we calculate the correlation potential �̂ [12,13]
and construct linear combinations of B splines which are

eigenstates of the Ĥ0 þ �̂ Hamiltonian. To include corre-
lations in Eq. (5), Brueckner orbitals should be used in the

right-hand side and the Hartree-Fock Hamiltonian Ĥ0

should be replaced by Ĥ0 þ �̂, where �̂ is the correlation
potential used to calculate the Brueckner orbitals.

Results and discussion.—Table I shows the contributions
to the PNC amplitude in Cs obtained in different approx-
imations. The correlations have a significant effect on
the tail contribution, and there are significant differences
in the values of the core and tail contributions between the
present work and Ref. [10]. There is also a 1.3% difference
for the main term. However, this difference is not impor-
tant. An accurate treatment of the main term goes beyond
the scope of the present Letter; we just take its value from
Ref. [10]. If the core and tail terms also have this 1.3%

relative uncertainty. that would be more than satisfactory
for our purposes; we will see below that the actual uncer-
tainty is larger.
Core contribution.—Our results for the core are pre-

sented in Table II. The result in the Dirac-Hartree-Fock
(DHF) approximation is in good agreement with those of
Refs. [3,10] (see also Table I), which were calculated in the
DHF approximation in both works [14].
Note the strong cancelation between terms with �c 6s

and �c 7s. This cancelation makes the core contribution
very sensitive to the inclusion of the core polarization
effect. We include it by solving the RPA equations for
both operators (HPNC and d). The equations for the electric
dipole operator are solved at! ¼ 0:0844 a:u:, which is the
experimental energy difference between the 6s and 7s
states of Cs.
The last line of Table II presents the effect of using

Brueckner orbitals for the core contribution. The use of
Brueckner orbitals in the core can be justified by the
condition that the core and valence states must be orthogo-

nal to each other, and using the same �̂ operator in both
cases is a good way to achieve this. The difference in the
core contribution using the RPA and Brueckner orbitals is
relatively small (see Table I). We use this difference as an
estimate of the uncertainty of the core contribution.
Due to the high sensitivity of the core contribution to

different corrections we found it useful to perform one
more test. We ran our code for the PNC in Raþ and found
excellent agreement with Ref. [15] for the core contribu-
tion in the RPA.
The final difference between the present work and

Ref. [10] for the core contribution is 0.0038 in units of
Table II. This difference is mostly due to the core polar-
ization effect.
Tail contribution.—The third row of Table I shows the

partial contributions to the tail component of the PNC
amplitude calculated in different approximations. To
include correlations we use four different sets of
Brueckner orbitals obtained with the use of two different

correlation-correction operators �̂: the second-order op-

erator �̂
ð2Þ

[12]; and the all-order operator �̂
ð1Þ

[13]. The

rescaling of �̂ is done to fit the energies of the lowest
TABLE I. Partial contributions to the EPNC [in
10�11ið�QW=NÞ a:u:] for Cs in different approximations.

Approximation Core Main Tail Total

RPAa 0.0026 0.8705 0.0192 0.8923

BOð�̂ð2ÞÞb 0.0015 0.8641 0.0272 0.8928

BOð��̂ð2ÞÞc 0.0018 0.8709 0.0244 0.8971

BOð�̂ð1ÞÞd 0.0018 0.8711 0.0238 0.8967

BOð��̂ð1ÞÞe 0.0018 0.8678 0.0242 0.8938

Ref. [10]f �0:0020 0.8823 0.0195 0.8998

aCore polarization but no correlations beyond it.
bBrueckner orbitals (BO) calculated with the second-order �̂.
cBO calculated with rescaled second-order �̂.
dBO calculated with the all-order �̂.
eBO calculated with rescaled all-order �̂.
fDHF for the core term; coupled cluster for the main term.

TABLE II. Contributions of the core states np1=2 to the EPNC

[in 10�11ið�QW=NÞ a:u:] for Cs in different approximations.

h�c 6sjdjc 7si hc 6sjdj�c 7si Sum

DHF 0.02471 �0:02645 �0:00174
RPAa 0.05991 �0:05821 0.00170

RPAb 0.06043 �0:05784 0.00259

BOþ RPAb 0.07231 �0:07049 0.00182

aRPA equations solved at Hartree-Fock frequency.
bRPA equations solved at experimental frequency, ! ¼
0:0844 a:u:
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valence states. Rescaling usually improves the wave func-
tions and therefore the matrix elements.

Inclusion of the correlations leads to a significant
increase in the values of the tail contribution (see
Table I). For our final number we take our most complete

calculation, using the all-order �̂ operator, while the
spread of values in the various Brueckner approximations
gives a reliable estimate of the uncertainty in our methods.

The result of Ref. [10] for the tail (0.0195, see Table I)
was obtained using a blend of many-body approximations
including a simplified coupled-cluster method which only
includes single and double excitations [14]. Note that our

all-order correlation potential �̂ includes multiple excita-
tions [13]. The result of Ref. [10] for the tail is close to our
result in the RPA but significantly smaller than our corre-
lated value.

Summary.—Table III presents the results of the most
accurate calculations of the correlated [without Breit,
quantum electrodynamic (QED), and neutron skin correc-
tion] PNC amplitude in Cs. The abbreviation CPþ PTSCI
stands for correlation potential [12] combined with the
perturbation theory in screened Coulomb interaction, CC
SD stands for coupled cluster with single and double
excitations, CC SDvT means coupled cluster with single,
double, and valence triple excitations. All numbers, apart
from those of Ref. [10] are in very good agreement with
each other. But if the result of Ref. [10] is corrected as
shown in Table I, it comes to very good agreement with the
other calculations as well (last line of Table III).

We summarize the results in Table IV. We take the main
term from Ref. [10] assuming that its value and uncertainty
were calculated correctly. The core and tail contributions
come from the present work. Then we add all other sig-
nificant contributions to the PNC amplitude in cesium
which can be found in the literature. The final value for
the PNC amplitude is

EPNC ¼ 0:8977ð40Þ � 10�11ið�QW=NÞ; (6)

which is in excellent agreement with our previous calcu-
lations, EPNC ¼ 0:8980ð45Þ [7,9]. The experimental value
for the PNC amplitude is [1]

EPNC=� ¼ 1:5935ð56Þ mV=cm: (7)

The most accurate value for the vector transition probabil-
ity � comes from the analysis [16] of the Bennett and
Wieman measurements [17]

� ¼ 26:957ð51Þa3B: (8)

Comparing Eqs. (6)–(8), leads to

QWð133CsÞ ¼ �72:58ð29Þexptð32Þtheory: (9)

This value is in a reasonable agreement with the prediction
of the standard model, QSM

W ¼ �73:23ð2Þ [18]. If we add
theoretical and experimental errors in Eq. (9) in quadra-
ture, the Cs PNC result deviates from the standard model
value by 1:5�:

QW �QSM
M � �QW ¼ 0:65ð43Þ: (10)

For small deviations from the standard model values we
may relate this to the deviation in sin2�W using the simple
relationship �QW � �4Z�ðsin2�WÞ which gives

sin 2�W ¼ 0:2356ð20Þ: (11)

This is also 1:5� off the standard model value 0.2386 (1)
[18] at near zero momentum transfer.
The new physics originating through vacuum polariza-

tion to gauge boson propagators is described by
weak isospin conserving S and isospin breaking T parame-
ters [19]

QW �QSM
M ¼ �0:800S� 0:007T: (12)

At the 1� level Eq. (10) leads to S ¼ �0:81ð54Þ.
Finally, a positive �QW could also be indicative of an

extra Z boson in the weak interaction [20]

QW �QSM
M � 0:4ð2N þ ZÞðMW=MZ�Þ2: (13)

Using Eq. (10) leads to MZ�
> 710 GeV=c2.
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TABLE III. Correlated PNC amplitude in Cs [in
10�11ið�QW=NÞ a:u:] in different calculations. Breit, QED,
and neutron skin corrections are not included.

Value Source and method

0.908 (9) CPþ PTSCI, Ref. [2]
0.909 (9) CC SD, Ref. [3]

0.905 (9) MBPT with fitting, Ref. [8]

0.9078 (45) CPþ PTSCI, Ref. [9]
0.8998 (24) CC SDvT, Ref. [10]

0.9079 (40) This work

TABLE IV. All significant contributions to the EPNC [in
10�11ið�QW=NÞ a:u:] for Cs.
Contribution Value Source

Core (n < 6) 0.0018 (8) This work

Main (n ¼ 6–9) 0.8823 (17) Ref. [10]

Tail (n > 9) 0.0238 (35) This work

Subtotal 0.9079 (40) This work

Breit �0:0055 ð1Þ Refs. [5,6]

QED �0:0029 ð3Þ Ref. [7]

Neutron skin �0:0018 ð5Þ Ref. [5]

Total 0.8977 (40) This work

PRL 109, 203003 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

16 NOVEMBER 2012

203003-4



[1] C. S. Wood, S. C. Bennett, D. Cho, B. P. Masterson, J. L.
Roberst, C. E. Tanner, and C. E. Wieman, Science 275,
1759 (1997).

[2] V. A. Dzuba, V. V. Flambaum, and O. P. Sushkov, Phys.
Lett. A 141, 147 (1989).

[3] S. A. Blundell, W.R. Johnson, and J. Sapirstein, Phys.
Rev. Lett. 65, 1411 (1990); S. A. Blundell, J. Sapirstein,
and W.R. Johnson, Phys. Rev. D 45, 1602 (1992).

[4] S. C. Bennett and C. E. Wieman, Phys. Rev. Lett. 82, 2484
(1999); 82, 4153(E) (1999); 83, 889(E) (1999).

[5] A. Derevianko, Phys. Rev. Lett. 85, 1618 (2000); Phys.
Rev. A 65, 012106 (2001).

[6] V. A. Dzuba, C. Harabati, W.R. Johnson, and M. S.
Safronova, Phys. Rev. A 63, 044103 (2001).

[7] V. V. Flambaum and J. S.M. Ginges, Phys. Rev. A 72,
052115 (2005).

[8] M.G. Kozlov, S. G. Porsev, and I. I. Tupitsyn, Phys. Rev.
Lett. 86, 3260 (2001).

[9] V. A. Dzuba, V. V. Flambaum, and J. S.M. Ginges, Phys.
Rev. D 66, 076013 (2002).

[10] S. G. Porsev, K. Beloy, and A. Derevianko, Phys. Rev.
Lett. 102, 181601 (2009); Phys. Rev. D 82, 036008 (2010).

[11] W.R. Johnson and J. Sapirstein, Phys. Rev. Lett. 57, 1126
(1986).

[12] V. A. Dzuba, V. V. Flambaum, P. G. Silvestrov, and O. P.
Sushkov, J. Phys. B 20, 1399 (1987).

[13] V. A. Dzuba, V. V. Flambaum, and O. P. Sushkov, Phys.
Lett. A 140, 493 (1989).

[14] A. Derevianko (private communication).
[15] R. Pal, D. Jiang, M. S. Safronova, and U. I. Safronova,

Phys. Rev. A 79, 062505 (2009).
[16] V. A. Dzuba and V.V. Flambaum, Phys. Rev. A 62, 052101

(2000).
[17] S. C. Bennett and C. E. Wieman, Phys. Rev. Lett. 82, 2484

(1999).
[18] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86,

010001 (2012).
[19] J. L. Rosner, Phys. Rev. D 65, 073026 (2002).
[20] W. J. Marciano and J. L. Rosner, Phys. Rev. Lett. 65, 2963

(1990); 68, 898(E) (1992).

PRL 109, 203003 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

16 NOVEMBER 2012

203003-5

http://dx.doi.org/10.1126/science.275.5307.1759
http://dx.doi.org/10.1126/science.275.5307.1759
http://dx.doi.org/10.1016/0375-9601(89)90777-9
http://dx.doi.org/10.1016/0375-9601(89)90777-9
http://dx.doi.org/10.1103/PhysRevLett.65.1411
http://dx.doi.org/10.1103/PhysRevLett.65.1411
http://dx.doi.org/10.1103/PhysRevD.45.1602
http://dx.doi.org/10.1103/PhysRevLett.82.2484
http://dx.doi.org/10.1103/PhysRevLett.82.2484
http://dx.doi.org/10.1103/PhysRevLett.82.4153
http://dx.doi.org/10.1103/PhysRevLett.83.889
http://dx.doi.org/10.1103/PhysRevLett.85.1618
http://dx.doi.org/10.1103/PhysRevA.65.012106
http://dx.doi.org/10.1103/PhysRevA.65.012106
http://dx.doi.org/10.1103/PhysRevA.63.044103
http://dx.doi.org/10.1103/PhysRevA.72.052115
http://dx.doi.org/10.1103/PhysRevA.72.052115
http://dx.doi.org/10.1103/PhysRevLett.86.3260
http://dx.doi.org/10.1103/PhysRevLett.86.3260
http://dx.doi.org/10.1103/PhysRevD.66.076013
http://dx.doi.org/10.1103/PhysRevD.66.076013
http://dx.doi.org/10.1103/PhysRevLett.102.181601
http://dx.doi.org/10.1103/PhysRevLett.102.181601
http://dx.doi.org/10.1103/PhysRevD.82.036008
http://dx.doi.org/10.1103/PhysRevLett.57.1126
http://dx.doi.org/10.1103/PhysRevLett.57.1126
http://dx.doi.org/10.1088/0022-3700/20/7/009
http://dx.doi.org/10.1016/0375-9601(89)90129-1
http://dx.doi.org/10.1016/0375-9601(89)90129-1
http://dx.doi.org/10.1103/PhysRevA.79.062505
http://dx.doi.org/10.1103/PhysRevA.62.052101
http://dx.doi.org/10.1103/PhysRevA.62.052101
http://dx.doi.org/10.1103/PhysRevLett.82.2484
http://dx.doi.org/10.1103/PhysRevLett.82.2484
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRevD.65.073026
http://dx.doi.org/10.1103/PhysRevLett.65.2963
http://dx.doi.org/10.1103/PhysRevLett.65.2963
http://dx.doi.org/10.1103/PhysRevLett.68.898

