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The accurate but expensive product of geminals ansatz may be approximated by a geminal power, but

this approach sacrifices size consistency. Here, we show both analytically and numerically that a size

consistent form very similar to the product of geminals can be recovered using a network of location-

specific Jastrow factors. Upon variational energy minimization, the network creates particle number

projections that remove the charge fluctuations responsible for size inconsistency. This polynomial cost

approach captures strong many-electron correlations, giving a maximum error of just 1:8 kcal=mol during

the double-bond dissociation of H2O in an STO-3G atomic orbital basis.
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The overwhelming majority of electronic structure
methods applied today rely fundamentally on the indepen-
dent particle approximation (IPA). These methods, which
include density functional theory [1], coupled cluster the-
ory [2], configuration interaction [3], and many body per-
turbation theory [3], all assume that the wave function is
well approximated by a single Slater determinant (SD) in
which the only correlations between electrons are those
due to Fermi statistics. This assumption fails dramatically
in a number of important cases displaying strong correla-
tion between electrons, including multiple-bond breaking,
excited states, transition metal compounds, and lattice
Hamiltonians used in the study of high temperature super-
conductivity. While this failure can in some cases be
rectified by active space methods that employ linear com-
binations of determinants, these methods’ costs increase
exponentially with system size. Indeed, when developing
methods to treat strong correlation, one prefers to retain the
formal properties of the SD: polynomially scaling cost,
energies that are variational (i.e., upper bounds), and size
consistency, in which two noninteracting systems give the
same total energy when modeled separately or together.

One approach to this ideal is to generalize the SD, which
is a product of one-particle functions (orbitals), to a prod-
uct of two-particle functions (geminals), known as the
antisymmetric product of geminals (APG),

j�APGi ¼
YN=2

i¼1

Ĝij0i; Ĝi ¼
X
rs

girsa
y
r"a

y
s#: (1)

Here, each operator Ĝi creates a pair of opposite-spin
electrons in a two-particle geminal defined by the weights

girs and operators a
y
r" and a

y
s# that create " and # electrons in

the sites (or orbitals) r and s. (The conclusions in this
Letter generalize to same-spin pairs and pfaffians [4,5],
but to avoid unnecessary complication we restrict our-
selves to opposite-spin pairs.) If no restrictions are placed
on the form of the geminals, the resulting wave function

has been shown to be highly accurate [6,7]. However, the
author is not aware of any polynomial cost, variational
methods for working with the general APG, and indeed,
it is more often approximated by requiring that the gemi-
nals be built from separate, mutually orthogonal sets of
one-particle functions [8–10], resulting in methods such as
perfect pairing (PP) [11] and the resonating valence bond
[12]. While these methods can achieve size consistency,
variational energies, and polynomial cost, they lack corre-
lation between electron pairs [13] and are thus unsuitable
for treating strong correlations between more than two
electrons [14]. While corrections can be applied via con-
figuration interaction [10,15], coupled cluster [14,16,17],
perturbation theory [10], and Hopf algebra [18,19], none of
these approaches simultaneously retain polynomial cost,
variational energies, and size consistency.
Building on the work of Casula and Sorella (see

Refs. [20–22] and especially Ref. [23]), we present an
ansatz that captures strong interpair correlations while
retaining polynomial cost, variational energies, and size
consistency. To the best of our knowledge, this is the first
example of a method that achieves all of these properties
for a general system and an ab initio Hamiltonian.
Ansatz.—We begin our construction with the well-

known geminal power (AGP) ansatz,

j�AGPi ¼ F̂N=2j0i; F̂ ¼ X
rs

frsa
y
r"a

y
s# ’

X
i

Ĝi; (2)

in which the (bosonic) electron pairs all reside in the same

low-energy geminal F̂, which should be similar to the sum

of the APG geminals Ĝi. For those more familiar with the
superconducting Bardeen—Cooper—Schrieffer (BCS)
ansatz [24], it may be helpful to consider that the AGP is
the resonating valence bond equivalent of a particle-
number-projected BCS, with the real space pairing matrix
frs related by a Fourier transform to the BCS k-space
weights (see Ref. [25], Eqs. 4.9 and 4.10). While the
AGP admits a number of polynomial cost, variational
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methods [20,21,26–30] (one of which in Ref. [30] achieves
a mean-field n3 cost), it suffers from a severe size consis-
tency problem resulting from terms in which a single

operator Ĝi is repeated, placing four or more electrons in
the same local geminal.

Our approach is to eliminate these charge transfer or
‘‘ionic’’ terms by enforcing local particle number distribu-
tions with a network of Jastrow factors (see Fig. 1).
We thus produce a size consistent Jastrow-AGP (JAGP)
ansatz,

j�JAGPi ¼ exp

 X
pq

X
��2";#

Ĵp�q�

!
F̂N=2j0i; (3)

in which the Jastrows operate on the bare AGP in the same
way they operate on a bare SD in the traditional Jastrow—

Slater ansatz [31]. The Jastrow factors Ĵp�q� inspect the

occupation (00, 01, 10, or 11) of each orbital pair p�q� and
apply a corresponding scalar factor to the wave function to
favor or penalize the configuration of that particular pair.
They are defined by

Ĵ p�q� ¼
X

n;m20;1

Cp�q�
nm P̂p�

n P̂q�
m ; (4)

where C is a tensor of penalty factors and the operator P̂p�
n

gives one if orbital p� has occupation n and zero other-
wise. Note that together, these Jastrow factors are equiva-
lent to the correlator product state tensor network [32,33],
and sowe refer to them as a location-specific Jastrow factor
network. In this Letter, we demonstrate that this network
restores size consistency to the AGP by imposing local
particle number constraints, delivering an ansatz that is
similar in character to the APG, size consistent, variational,
polynomial cost, and effective at treating strong many-
electron correlations.

Charge fluctuations.—To be size consistent, a wave
function must factor into a product of subsystem wave
functions j�ABi ¼ j�Aij�Bi when applied to two non-
interacting subsystems A and B. As noted previously by

Sorella et al. [23], unphysical charge fluctuations prevent
this factorization. For a simple example, imagine two H2

molecules described by geminals ĜA and ĜB. The AGP

built from these geminals, ðĜA þ ĜBÞ2j0i, contains both

the neutral term ĜAĜBj0i and the unphysical ionic terms

Ĝ2
Aj0i and Ĝ2

Bj0i in which all four electrons reside on one
molecule. Without the ionic terms, this AGP would factor
correctly and be size consistent.
We may generalize this analysis by expanding the AGP

in the basis of occupation number vectors jni, each of
which specifies a unique occupation pattern of the orbitals,

j�AGPi ¼
XN"N#

n

det�njni: (5)

Here, the coefficients simplify to determinants of the occu-
pied pairing matrices �n [34], which are obtained by
deleting from f rows and columns corresponding to unoc-
cupied orbitals. Note that the sum is restricted to states with
the correct total " and # electron counts N" ¼ N# ¼ N=2.
An intuitive guess for j�ABi is to take the AGP geminal

as the sum of the subsystem geminals and the Jastrow
factor as the product of the subsystem Jastrows, in which
case the pairing matrix f will be block diagonal with
blocks equal to the subsystem matrices fA and fB, and
the Jastrows will be defined by C ¼ CA þ CB. Such a
choice results in

j�ABi ¼ eĴAeĴB
XN"N#

n¼nA;nB

det�nA
det�nB

jni; (6)

where the determinant factors due to the block-diagonality
of f and the Jastrow factors due to the additive separability
of C. However, j�ABi does not factor into j�Aij�Bi,
because the summation over orbital occupations n contains
ionic terms in which electrons are transferred between
subsystems.
Using real space three-body Jastrow factors, Sorella

et al. [23] showed that these spurious charge fluctuations
can be partially suppressed, mitigating the size consistency
error. However, removing the error completely through this
approach would require unlimited flexibility in the Jastrow.
In practice, their wave function retained a size consistency
error on the order of 1 eV in the carbon dimer [23],
although the effect on binding energies was much smaller
due to error cancellation. We expand on this idea, showing
how Jastrow factors can eliminate the size consistency
error entirely.
Partial number projection.—Consider the operator

Q̂ð�;M;XÞ ¼ exp

�
��

�
M� X

p2X

P̂p
1

�
2
�
; (7)

which we call a partial number projection operator favor-
ingM electrons in the set of orbitals X. In the limit� ! 1,
this becomes a strict projection, deleting terms in which

FIG. 1 (color online). A cartoon schematic of our JAGP ansatz,
in which the geminal power is constructed from nonorthogonal
local geminals (ovals) describing bonds between neighboring
atoms (circles). Particle number projectors (rectangles) built
from Jastrow factors constrain electron counts on atoms and
groups of atoms to remove the ‘‘ionic’’ AGP terms responsible
for size consistency errors.
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X0s electron count differs from M. We may, thus, fix
the subsystem electron counts and delete ionic terms using

the operators Q̂A ¼ Q̂ð�;NA"; A"ÞQ̂ð�;NA#; A#Þ and Q̂B ¼
Q̂ð�;NB"; B"ÞQ̂ð�;NB#; B#Þ, which when applied to Eq. (6)

produce the desired factorization,

lim
�!1Q̂AQ̂Bj�ABi ¼ j�Aij�Bi;

j�Ai ¼ eĴA
XNA"NA#

nA

det�nA
jnAi;

j�Bi ¼ eĴB
XNB"NB#

nB

det�nB
jnBi:

(8)

Thus, if we can apply appropriate projections, JAGP will
factor and be size consistent.

The advantage of our ansatz is that the partial projection

operators Q̂A and Q̂B can be built into the Jastrow network.
To see how, expand the square in Eq. (7) and drop the
constant term expð��M2Þ, which only affects normaliza-
tion, to obtain

Q̂ð�;M;XÞ ! exp

�
2M�

X
p2X

P̂p
1 � �

X
p;q2X

P̂p
1 P̂

q
1

�
(9)

¼ exp

� X
p;q2X

�P̂p
1 P̂

q
0 þ ð�� �ÞP̂p

1 P̂
q
1

�
; (10)

where � ¼ 2M�=k and k is the number of orbitals in X.
Inspecting Eq. (10) reveals that the Jastrow network
defined in Eqs. (3) and (4) can contain any combination
of partial projection operators. The JAGP is, therefore,
capable of deleting ionic terms by restricting subsystem
electron counts, making it factorizable and size consistent.
Furthermore, if we take our AGP geminal as a sum of the
localized but nonorthogonal APG geminals, partial number
projections can help ensure that each local geminal has the
correct number of electrons. Our JAGP, thereby, emulates
the structure of the APG.

Variational minimization.—We use variational Monte
Carlo (VMC) calculations [31,35] to evaluate andminimize
the JAGP energy by varying independently all elements
of the pairing matrix f and Jastrow factor penalty tensor
C. The Hamiltonian is the typical Born—Oppenheimer
approximation to the electronic Hamiltonian with relativ-
istic terms neglected. Note especially that we work in Fock
space rather than real space. We use an improved version of
the linear method optimizer along the lines proposed in
Ref. [36], the details of which will be presented elsewhere
[37]. For the present discussion, it suffices to convey that
this method is variational with a cost of Oðnsn2on2uÞ, where
ns, no, and nu are the sample size and the numbers of
occupied and unoccupied orbitals.

Hydrogen gas.—A collection of n well-separated hydro-
gen molecules reveals the severity of AGP’s charge fluc-
tuations. Working in a symmetrically orthogonalized

STO-3G basis [38], in which a single 1s orbital is centered
on each H, we may define the AGP geminal as a sum of PP
geminals,

j�nH2
i ¼ Q̂

�Xn
i

xgyi"g
y
i# þ yuyi"u

y
i#

�
nj0i: (11)

Here, x2 þ y2 ¼ 1, Q̂ is a partial number projection opera-

tor suppressing charge fluctuations, and gyi"=# and uyi"=#
create electrons in the bonding and antibonding orbitals,

respectively, of the ith H2 molecule. If we parameterize Q̂
to apply a penalty of e�2� for each incorrect H2 electron
count, then the average number of charge transfers (i.e., the
number of ½H2�2þ ions) will be

hNCTi ¼
Pn=2

l¼0 le
�8�lðxlyll! Þ2 n!

ðn�2lÞ!Pn=2
l¼0 e

�8�lðxlyll! Þ2 n!
ðn�2lÞ!

; (12)
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FIG. 2 (color online). The average number of unphysical
charge transfers per molecule in a system of n well-separated
H2 molecules. The wave function is a PP-parameterized AGP
with various partial number projections. The dotted line is a fit
showing the asymptotic 1=n decay for � ¼ 0:1.
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FIG. 3 (color online). Energy errors per molecule for n well-
separated H2 molecules. For AGP, both the PP and optimized
versions of the wave function are shown.
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where the contributions are grouped by the number of
charge transfers l. Figure 2 shows that hNCT=ni decays as
1=n in the thermodynamic limit n ! 1, recovering the
size extensivity of the BCS ansatz. However, the steep
growth of hNCT=ni for small n is unacceptable for quantum
chemistry, where system sizes range from tens to hundreds
of bonding electron pairs. Encouragingly, hNCT=ni is very
sensitive to increasing �, showing that charge fluctuations
are easily suppressed in our ansatz.

Without partial number projection, the charge fluctua-
tions in an AGP built from PP geminals render it less
accurate than the IPA for small n, as shown in Fig. 3.
Here, we use the somewhat more realistic symmetrically
orthogonalized 6-31G basis [39]. The errors for the varia-
tionally optimized AGP are less than those of the IPA, but
they remain large compared to those of singles and doubles
configuration interaction (CISD), whose well-known size
consistency problem is much less severe. Most impor-
tantly, variational optimization (with initial guess f ¼
random, C ¼ 0) of our JAGP completely removes size
consistency errors and produces the exact PP result. This
shows our optimization can discover the need for particle
number projection and impose it automatically.

It is worth noting that a significant component of the
JAGP’s correlation energy is size extensive (i.e., it scales
linearly with system size for large systems), because the
JAGP can always be made to contain PP, and PP energies
are size extensive. Less clear is whether the entire
JAGP energy is extensive, which clearly merits further
investigation.

Double bond dissociation.—To demonstrate JAGP’s
ability to capture strong interpair correlations while main-
taining size consistency, we have applied it to the symmet-
ric double-bond dissociation of H2O in a symmetrically
orthogonalized STO-3G basis. We first optimized the wave
function for a single molecule, starting from a very poor
initial guess (f ¼ random, C ¼ 0). Figure 4 shows that the

maximum error relative to full configuration interaction
(FCI) is 1:8 kcal=mol, a factor of 2.5 smaller than the
4:5 kcal=mol error produced by unrestricted coupled clus-
ter with singles, doubles, and perturbative triples [UCCSD
(T)]. In terms of correlation energies (defined with respect
to an unrestricted SD), JAGP retains above 90% of the
correlation across the whole curve, while UCCSD(T) is
less balanced with correlation recovery ranging from over
99% near equilibrium down to 75% upon dissociation.
After optimizing our ansatz for one water molecule, we

tested size consistency by constructing wave functions for
two, four, and eight well-separated water molecules. The
overall geminals were built as sums of monomer geminals,
and the Jastrow tensor C as the sum of the monomers’ plus
the terms necessary to impose partial number projection
with � ¼ 2 on the " and # electron occupations of each
molecule. Table I reveals that the energy per molecule is
independent of the number of molecules, showing that
JAGP is size consistent even when it is not exact (as was
the case for H2). Finally, note that the eight water case
corresponds to a 40-orbital active space.
Conclusions.—We have shown that a geminal power

augmented with a network of location-specific Jastrow
factors recovers size consistency in a localized one particle
basis, producing an ansatz similar in character to the
powerful but expensive product of nonorthogonal gemi-
nals. The resulting method is variational, size consistent,
polynomial cost, and able to capture strong many-electron
correlations. It completely removes unphysical charge
fluctuations from a dilute H2 gas and accurately captures
the strong correlations of water’s double-bond dissocia-
tion. We believe it is the first geminal method satisfying all
of these properties and that it is a promising candidate for
applications to other strongly correlated systems.
We thankMartin Head-Gordon for helpful conversations
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for Basic Research in Science for funding.
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