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We propose the implementation of the Holstein model by means of digital methods in a linear chain of

trapped ions. We show how the simulation fidelity scales with the generation of phononic excitations. We

propose a decomposition and a stepwise trapped-ion implementation of the Holstein Hamiltonian. Via

numerical simulations, we study how the protocol is affected by realistic gates. Finally, we show how

measurements of the size of the simulated polaron can be performed.
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Quantum simulators [1,2] are promising tools for the
deep comprehension of complex quantum dynamics. In a
quantum simulator, the higher control on the simulating
system can allow us to reproduce and recover nontrivial
quantum behaviors. Recently, a significant boost to the
field of quantum simulations has been provided by the
use of digital approximations in trapped-ion setups [3,4],
based on stroboscopic decompositions of unitary operators
[5,6]. However, the digital simulation of coupled bosonic-
fermionic systems, naturally described by unbounded
Hamiltonians, has not been considered.

Strongly correlated quantum many body systems repre-
sent a challenge to both computational and analytic meth-
ods. Among them, correlated fermionic-bosonic models
are of critical relevance. The importance of correlation
between electrons and ion vibrations has been proven for
a large number of condensed-matter systems [7]. Their role
in high-temperature superconductors, as fullerides and
cuprates, is still debated [8–10]. In solid state systems, the
correlation between the presence of electrons in a lattice
and deformations of the latter can result in the formation of
polarons: electrons and phonons can no longer be consid-
ered as stand-alone particles. Depending on the strength of
the electron-phonon couplings, the cloud of lattice dis-
placements surrounding the electron can be different sizes.
For strong couplings, the electrons can be trapped, with
remarkable changes of the global properties [11]. The
Holstein model [12] has been proved to naturally describe
the strong coupling case. This model has been recently
addressed by heavy numerical simulations [13] and classi-
cal analog simulations for a reduced number of sites [14].
Perturbation methods based on the Lang-Firsov approxi-
mations [15], valid in the strong coupling limit, have been
widely used. The dimensionality of the underlying lattice
also raises critical features [16]. Therefore, the full and
complete comprehension of the electron-phonon correla-
tions is still an open problem. From a quantum mechanics
point of view, when considering creation of phonons, even
with few electron sites, the size of the simulated Hilbert
space can dramatically grow. The quantum simulation of

such a complex dynamics could represent an important
step forward in the description of condensed matter
systems.
Trapped-ion systems are among the most controllable

quantum systems. They offer remarkable computational
power to perform quantum simulations exponentially
faster than their classical counterparts [17–32].
In this Letter, we propose the implementation of the

Holstein Hamiltonian in a chain of trapped ions, using
digital-analog approximation methods, in which the fermi-
onic part is digitized and the bosonic part is analog and
provided naturally by the phonons. First, we address the
problem of simulating unbounded Hamiltonians with
digital-analog protocols. Then, we provide a convenient
decomposition of the Holstein Hamiltonian, in that each
step can be implemented in a trapped-ion setup. We discuss
a possible experimental implementation, testing the whole
protocol with numerical integrations of the Schrödinger
equation. We show how critical observables, as electron-
phonon correlations, can be retrieved from the trapped ion
setup, leading to an estimation of the polaron size.
Decomposition of the model.—It is known that the

dynamics of a quantum state under the action of a
Hamiltonian H can be recovered by using combined
fractal-stroboscopic symmetric decompositions [5,6]. In
most practical cases, one can assume a fractal depth of one.
This will be the case through all the rest of our analysis.
With these techniques, the target HamiltonianH is decom-
posed in a set of m terms: H ¼ P

m
i¼1 Hi. Then, the sym-

metric decomposition for the unitary operator encoding the
dynamics of Hamiltonian H reads

UrðtÞ ¼
 Ym
i¼1

e�ðiHit=2rÞ
Y1
i¼m

e�ðiHit=2rÞ
!
r

: (1)

Here r is the degree of approximation in terms of Trotter
steps. It has been shown [6] that, using symmetric Suzuki
fractal decompositions, the number of gates needed to
approximate the exact time evolution of the quantum state
grows with the norm of the simulated Hamiltonian.
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Therefore, it is a natural problem to think of a quantum
simulation involving particle generation, in particular of
bosons, whose number can grow, in principle, indefinitely.
However, in the standard approach to these problems, the
dynamics of a bosonic Hilbert space can be recovered by
truncating, at a certain point, of the number of possible
bosonic excitations. Thus, the number of gates needed to
achieve a certain fidelity for the simulated quantum state
grows as more bosonic excitations are created.

The Holstein Hamiltonian [12], of a chain of N sites (in
the following @ ¼ 1), reads

H ¼ �h
XN�1

i¼1

ðcyi ciþ1 þ H:c:Þ þ g
XN
i¼1

ðbi þ byi Þni

þ!0

XN
i¼1

byi bi: (2)

Here, ciðcyi Þ is the annihilation (creation) operator in the

electron site i, and biðbyi Þ is the phonon annihilation (cre-

ation) operator on the site i; ni ¼ cyi ci is the electronic
occupation number operator. The parameters h, g, and !0

stand, respectively, for a nearest-neighbor (NN) site hop-
ping for the electrons, electron-phonon coupling, and free
energy of the phonons. To encode the model in a trapped-
ion chain, we first map the fermionic operators through the
Jordan-Wigner transformation, ci ! Q

i�1
j¼1 �

z
j�

�
i to tensor

products of Pauli matrices. The mapped Hamiltonian
describes now a coupled spin-boson system

H ¼ h
XN�1

i¼1

ð�þ
i �

�
iþ1 þ H:c:Þ þ g

XN
i¼1

ðbi þ byi Þ
ð�z

i þ 1Þ
2

þ!0

XN
i¼1

byi bi: (3)

The first term can be rewritten as h
2

P
N
i¼1ð�x

i �
x
iþ1 þ

�y
i �

y
iþ1Þ. We now decompose the Hamiltonian into three

parts, H ¼ H1 þH2 þH3. The single steps read

H1 ¼
XN�1

i¼1

h

2
�x

i �
x
iþ1 þ

!0

3

XN
i¼1

byi bi;

H2 ¼
XN�1

i¼1

h

2
�y

i �
y
iþ1 þ

!0

3

XN
i¼1

byi bi;

H3 ¼
XN
i¼1

gðbi þ byi Þ
ð�z

i þ 1Þ
2

þ!0

3

XN
i¼1

byi bi:

(4)

According to Ref. [6], one can upper bound the number of
gates Ng needed to achieve a simulation error smaller than

�, by giving an upper bound for the norm of H [33],

Ng � 3� 52k½3ðjhjðN � 1Þ þ 2jgjN ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M� 1

p

þ!0NMÞt�1þð1=2kÞ=�1=2k: (5)

As mentioned before, the fractal depth k [5] can be set to
one in most applications. Here, we show the dependence
of the number of gates in the number of fermionic sites N,
and on the truncation in the number of bosons M. As
the number of created phonons increases, one needs a
higher-level truncation, and a larger Hamiltonian norm.
Nevertheless, this shows that we can efficiently simulate a
2N � ðMþ 1ÞN Hilbert space, i.e., with a number of gates
that grows at most polynomially in N and M. To show the
scaling of fidelities with the parameters considered, we plot
in Fig. 1 the time dependence of the fidelity loss 1� FðtÞ ¼
1� jh�EðtÞj�SðtÞij2 of the simulated wave function
j�SðtÞi versus the exact one j�EðtÞi as a function of
coupling g and of number of sitesN. The particular decom-
position has been chosen so that all terms in Eq. (4) can be
implemented in a linear chain of trapped ions.
Trapped-ion setup.—We consider a set of N þ 1 trapped

ions in a chain, in order to simulate N fermionic sites
provided with Holstein interactions. The ions are bounded
strongly in the radial direction, and confined longitudinally
within a harmonic potential [34]. We define �i, i ¼
1; 2; . . . ; N þ 1, as the frequencies of the axial normal
modes. We relate the ion normal mode energies with the
dispersionless phonon energies in Eq. (2) via �i¼�i�!0

3 .

The three Hamiltonian steps H1, H2, and H3 are derived in
the interaction picture with respect to

H0 ¼
XNþ1

i¼1

!

2
�z

i þ
XN
i¼1

�ib
y
i bi þ �Nþ1b

y
Nþ1bNþ1; (6)

where! is the excitation energy of the individual ion taken
as a two-level system, i.e., the carrier frequency. In this
way, the free energies of N normal modes do not disappear
in the interaction picture, and a part of them is still present
in order to recover the dispersionless phononic spectrum.

(a) (b)

FIG. 1 (color online). (a) Behavior of the fidelity loss 1�
FðtÞ ¼ 1� jh�EðtÞj�SðtÞij2, for a two site configuration, as a
function of the electron-phonon coupling strength g, for !0 ¼
h=4. As the coupling g increases, more phonons are created, the
Hilbert space describing the dynamics enlarges, and the fidelity
decreases for a fixed number of approximant gates (r ¼ 10 here).
(b) Dependence of the fidelity loss in the number of sites. Here
g ¼ 0:3h, !0 ¼ 0:5h, and ten symmetric steps are considered
(r ¼ 10). The initial state of both plots corresponds to a con-
figuration in which an electron is injected in the site N=2 (N
even) or ðN þ 1Þ=2 (N odd), and there are no phonons.
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To simulate dynamics associated with H1 and H2 of
Eq. (4), one has to achieve a NN Ising coupling. The
possibility of obtaining an Ising field in linear chains of
trapped ions has been proposed and realized [32,35].
However, in implementing NN interactions between
more than two ions, one must be careful in designing an
appropriate set of lasers and detunings in order to minimize
the spurious non-nearest-neighbor (NNN) effects. To this
extent, we have realized numerical simulations for a 3þ 1
ions setup [33], using one set of two pairs of counter-
propagating lasers detuned close to the shifted center of
mass mode of frequency �1 ¼ �1 �!0=3 to drive the first
two ions (detunings��1), and another set of lasers detuned
close to a second mode of frequency �2, that in the case of
3þ 1 ions can be chosen as the breathing mode, addressing
the second and the third ion (detunings��2). For a generic
number of ions, Rabi frequencies �i of the lasers driving
the ith and the (iþ 1)th ions are chosen to achieve the
desired strength in the Ising coupling, according to [35],

HNN ¼ XN�1

i¼1

�2
i

��XN
m¼1

�i;m�iþ1;m�m

�2
i � �2

m

�

þ �i;Nþ1�iþ1;Nþ1�Nþ1

�2
i � �2

Nþ1

�
�x

i �
x
iþ1: (7)

In Fig. 2, the first and second ion are driven with two pairs
of counterpropagating lasers with detuning close to the
shifted center of mass mode (�1 ¼ 1:0187 �1 for !0 ¼
h=4). The Rabi frequencies are chosen properly in order to
reach a NN interaction of h=2 ¼ 0:001 �1. Lasers driving
the second and the third ions are detuned close to the
shifted breathing mode at �2 ¼ 1:731 �1 [34], with
parameters �2 ¼ 1:71196 �1. Detunings are chosen to have

a dynamics decoupled with respect to the phonons at time
steps �333�t and a negligible NNN interaction [33]. At
these times, the ion spins match the exact value, phonons
are detached from spins and the fidelity oscillation (top
black curve) FðtÞ ¼ jh�EðtÞj�IðtÞij2 reaches maxima,
with peaks of �0:995.
The initial state, as in all our numerical simulations,

except where specified, is chosen to mimic a configuration
in which one electron is injected at the center of a one-
dimensional lattice provided with Holstein interactions. To
this extent, all the spins are initialized in the opposite Z
direction, except the one in site N=2, in case of even N, or
ðN þ 1Þ=2 in case of odd N. The spin of the last ion has to
be initialized along the Z direction in order to be a passive
ion with respect to the dynamics, according to the protocol
for the implementation of H3 given below. The vibrational
modes are assumed to be initially cooled down to the
ground state with resolved sideband cooling [36].
Notice that one can always implement a perfect NN

coupling by using more stroboscopic steps. A possibility
is to decompose the global NN couplings into nearest-
neighbor pairwise interactions. Another possibility is to
design a counter-, non-nearest-neighbor interaction step
between pairs of non-nearest neighbor ions in order to
eliminate the spurious NNN imperfections. Given that one

has an unwanted hi;j�
i
x�

j
x, one can add more Trotter steps

to the protocol of the form �hi;j�
i
x�

j
x in order to have a

Hamiltonian free of NNN couplings. The dynamics asso-
ciated with the step withH2 is implemented similarly to the
one of H1, with a different choice of the initial phases of
the lasers, in order to achieve a YY interaction.
The Hamiltonian H3 is realized as a combination of

2N red- and blue-detuned lasers with appropriate initial
phases in order to recover a coupling of the ith ion (i ¼
1; . . . ; N) with the mith normal (shifted) mode

�i;mi
�i�

i
xðbymi

þ bmi
Þ. The ith ion is driven with red- and

blue-detuned lasers to the mith mode, establishing a one-
to-one correspondence between the firstN ions and the first
N normal modes. Moreover, the last ion of the chain is
driven by 2N lasers detuned in order to be coupled with the
same modes of the ions in the chain. Two additional
rotations of the spins of all ions around the Y axis are
applied before and after coupling the spins to the phonons.
They can be obtained by acting two times with a global
beam upon all the N þ 1 ions at the same time. The
Hamiltonian describing this process is,

He-p ¼ XN
i¼1

ð�i�i;mi
�i

z þ�Nþ1;i�Nþ1;mi
�Nþ1

z Þðbmi
þ bymi

Þ:

(8)

The Rabi frequencies of the lasers must be chosen accord-
ing to�i ¼ g=2�i;mi

,�Nþ1;i ¼ g=2�Nþ1;mi
. If the last ion

is initialized with the spin aligned along the Z axis and
not addressed by spin flip gates during the simulation, the

FIG. 2 (color online). Dynamics for the 3þ 1 ions configura-
tion of the NN XX Hamiltonian. Dotted curves stand for h�i

ziE
for the exact dynamics, and solid curves stand for h�i

ziI for
realistic ion interactions (i ¼ 1, 2, 3 for the first, second, and
third ion). The parameters are chosen in order to have maxima in
the fidelity FðtÞ ¼ jh�EðtÞj�IðtÞij2 of �0:995 (top black curve)
at time steps of �333 �1t. These time steps can be chosen as
Trotter steps.
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previous described gates result in the effective Hamiltonian
on the first N ions subspace,

He-p;N ¼ XN
i¼1

g
ð�i

z þ 1Þ
2

ðbmi
þ bymi

Þ: (9)

Digital simulation.—In general, digital protocols are
very sensitive to the state fidelity that one can achieve at
the end of the digital step. According to the mathematical
theory, increasing the number of steps will result in an
increased fidelity on the final simulated state. However, if
one has an error on a single step, increasing the number of
gates will result in the accumulation of these errors. Thus
on one hand the use of more accurate single gates is
required, on the other hand one has to have a compromise
between the increased fidelity due to the increased number
of steps and the fidelity loss due to the accumulated single
gate error.

To have a quantitative estimation of the fidelity loss with
the dynamics of the full ion Hamiltonian, we have realized
numerical integrations for the Schrödinger equation for
N ¼ 2þ 1 [33] and N ¼ 3þ 1 ion setups. We point out
that we consider this reduced number of ions because of
numerical computation restrictions, and to prove the fea-
sibility of our model. In general our formalism may be
straightforwardly extended to several ions. In Fig. 3, a
simulation for r ¼ 2 and r ¼ 3 symmetric Trotter steps
is realized. The fidelity loss 1� jh�EðtÞj�SðtÞij2 for the
Trotter protocol with perfect gates, i.e., associated to
Hamiltonians H1, H2, and H3, is plotted against points of
fidelity loss 1� jh�EðtÞj�IðtÞij2 obtained with realistic
trapped-ion gates including the full laser interactions
which are plotted at various times. As can be appreciated,
the fidelity loss for the ion gates is only slightly larger than
for the exact Trotter gates, showing the feasibility of the
protocol with realistic trapped-ion interactions. The total
simulation time has been chosen in order to remain under
the decoherence time for the ions [37]. The frequency

of the center of mass mode can be assumed to be �1 ’
2�� 1 MHz. The global rotation for the ion spins can be
assumed to be done in 7 �s [3]. The number of global
rotations is 4r. The step for the red and blue sideband
Hamiltonian can be performed in the same time as the
step for the NN XX gate (or even faster). Provided with
these parameters, for a final simulated time of 2000=�1 �
318 �s, the time spent for the simulation can be taken to be
of �1 ms. Given that typical heating rates in trapped ion
experiments [3] are of about 1 phonon=s, we can assume
that for the time of the proposed simulation heating will not
be significant.
Tuning the coupling strength g by setting the Rabi

frequencies of the red and blue detuned lasers to various
values, one can measure the different correlations between
electron and phonon displacement at distant sites,

�ði; jÞ ¼ h�ðtÞjcyi ciðbyj þ bjÞj�ðtÞi: (10)

This will amount to a signature of the polaron size [11].
Ranging from small to large gwill lead to a measure of the
crossover between large or small polaron. Notice that these
correlations are mapped in our ion setup onto

�ði; jÞ ¼ h�ðtÞjðbmj
þ bymj

Þ ð�
z
i þ 1Þ
2

j�ðtÞi; (11)

which can be measured by mapping the motional onto the
internal state of the auxiliary (N þ 1)th ion, and then detect-
ing the resonance fluorescence of ions N þ 1 and i [22,24].
We notice that with our setup the possibility of simulating a
2D and 3D Holstein model is provided, by encoding two-
and three-dimensional interactions into a linear chain by
addressing distant ions with nonlocal gates [4].
Currently, more than 100 gates have been implemented

in a trapped-ion quantum simulation experiment with
Trotter methods [3]. In the near future, it should be possible
to achieve hundreds or even thousands of gates per experi-
ment [38], allowing our proposal to reach about ten qubits.
It is noteworthy to mention that our proposed digital quan-
tum simulation will already overcome the limits of classi-
cal computers with 10 ions and 5 phonons per ion. This will
allow us to study the formation of small polarons under
these conditions. Future experiments involving 20 to 30
ions will permit us to address the study of more complex
dynamics, including electron-electron correlations medi-
ated by phonons. In this manner, the trapped-ion quantum
simulator will prove to be a remarkable tool for simulating
fermions coupled to bosons and related condensed-matter
or high-energy physics scenarios.
The authors acknowledge funding from Basque

Government BFI08.211 and IT472-10, EC Marie Curie
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FIG. 3 (color online). Fidelity loss for 3þ 1 ion configuration,
involving Trotter simulation with perfect gates and realistic ion
interactions, for two and three symmetric Trotter steps.
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Büchler, Nat. Phys. 6, 382 (2010).

[21] L. Lamata, J. León, T. Schätz, and E. Solano, Phys. Rev.
Lett. 98, 253005 (2007).

[22] R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano,
R. Blatt, and C. F. Roos, Nature (London) 463, 68
(2010).

[23] J. Casanova, J. J. Garcı́a-Ripoll, R. Gerritsma, C. F. Roos,
and E. Solano, Phys. Rev. A 82, 020101 (2010).

[24] R. Gerritsma, B. P. Lanyon, G. Kirchmair, F. Zähringer,
C. Hempel, J. Casanova, J. J. Garcı́a-Ripoll, E. Solano, R.
Blatt, and C. F. Roos, Phys. Rev. Lett. 106, 060503 (2011).

[25] J. Casanova, C. Sabı́n, J. León, I. L. Egusquiza, R.
Gerritsma, C. F. Roos, J. J. Garcı́a-Ripoll, and E. Solano,
Phys. Rev. X 1, 021018 (2011).

[26] L. Lamata, J. Casanova, R. Gerritsma, C. F. Roos, J. J.
Garcı́a-Ripoll, and E. Solano, New J. Phys. 13, 095003
(2011).

[27] J. Casanova, L. Lamata, I. L. Egusquiza, R. Gerritsma,
C. F. Roos, J. J. Garcı́a-Ripoll, and E. Solano, Phys. Rev.
Lett. 107, 260501 (2011).

[28] J. Welzel, A. Bautista-Salvador, C. Abarbanel, V.
Wineman-Fisher, C. Wunderlich, R. Folman, and F.
Schmidt-Kaler, Eur. Phys. J. D 65, 285 (2011).

[29] J.W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang,
J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger,
Nature (London) 463, 68 (2010).

[30] M. Johanning, A. F. Varón, and C. Wunderlich, J. Phys. B
42, 154009 (2009).

[31] R. Blatt and C. F. Roos, Nat. Phys. 8, 277 (2012).
[32] K. Kim, M.-S. Chang, S. Korenblit, R. Islam, E. E.

Edwards, J. K. Freericks, G.-D. Lin, L.-M. Duan, and C.
Monroe, Nature (London) 465, 590 (2010).

[33] See the Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.109.200501 for fur-
ther details and numerical validations for our proposal.

[34] D. F. V. James, Appl. Phys. B 66, 181 (1998).
[35] K. Kim, M. S. Chang, R. Islam, S. Korenblit, L.M. Duan,

and C. Monroe, Phys. Rev. Lett. 103, 120502 (2009).
[36] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Rev.

Mod. Phys. 75, 281 (2003).
[37] H. Häffner, C. F. Roos, and R. Blatt, Phys. Rep. 469, 155

(2008).
[38] Rainer Blatt (private communication).

PRL 109, 200501 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

16 NOVEMBER 2012

200501-5

http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1126/science.273.5278.1073
http://dx.doi.org/10.1126/science.1208001
http://dx.doi.org/10.1103/PhysRevLett.108.190502
http://dx.doi.org/10.1016/0375-9601(90)90962-N
http://dx.doi.org/10.1007/s00220-006-0150-x
http://dx.doi.org/10.1103/RevModPhys.69.575
http://dx.doi.org/10.1038/35087518
http://dx.doi.org/10.1038/35087518
http://dx.doi.org/10.1038/nature06874
http://dx.doi.org/10.1103/PhysRevB.54.14971
http://dx.doi.org/10.1103/PhysRevB.54.14971
http://dx.doi.org/10.1103/PhysRevB.60.4618
http://dx.doi.org/10.1103/PhysRevB.60.4618
http://dx.doi.org/10.1103/PhysRevB.62.1496
http://dx.doi.org/10.1016/0003-4916(59)90002-8
http://dx.doi.org/10.1016/0003-4916(59)90003-X
http://dx.doi.org/10.1016/0003-4916(59)90003-X
http://dx.doi.org/10.1103/PhysRevB.83.075104
http://dx.doi.org/10.1103/PhysRevB.83.075104
http://dx.doi.org/10.1103/PhysRevB.84.155101
http://dx.doi.org/10.1103/PhysRevB.84.155101
http://dx.doi.org/10.1103/PhysRevB.65.174306
http://dx.doi.org/10.1103/PhysRevB.65.174306
http://dx.doi.org/10.1103/PhysRevLett.92.207901
http://dx.doi.org/10.1038/nphys1032
http://dx.doi.org/10.1038/nphys1614
http://dx.doi.org/10.1103/PhysRevLett.98.253005
http://dx.doi.org/10.1103/PhysRevLett.98.253005
http://dx.doi.org/10.1038/nature08688
http://dx.doi.org/10.1038/nature08688
http://dx.doi.org/10.1103/PhysRevA.82.020101
http://dx.doi.org/10.1103/PhysRevLett.106.060503
http://dx.doi.org/10.1103/PhysRevX.1.021018
http://dx.doi.org/10.1088/1367-2630/13/9/095003
http://dx.doi.org/10.1088/1367-2630/13/9/095003
http://dx.doi.org/10.1103/PhysRevLett.107.260501
http://dx.doi.org/10.1103/PhysRevLett.107.260501
http://dx.doi.org/10.1140/epjd/e2011-20098-y
http://dx.doi.org/10.1038/nature08688
http://dx.doi.org/10.1088/0953-4075/42/15/154009
http://dx.doi.org/10.1088/0953-4075/42/15/154009
http://dx.doi.org/10.1038/nphys2252
http://dx.doi.org/10.1038/nature09071
http://link.aps.org/supplemental/10.1103/PhysRevLett.109.200501
http://link.aps.org/supplemental/10.1103/PhysRevLett.109.200501
http://dx.doi.org/10.1007/s003400050373
http://dx.doi.org/10.1103/PhysRevLett.103.120502
http://dx.doi.org/10.1103/RevModPhys.75.281
http://dx.doi.org/10.1103/RevModPhys.75.281
http://dx.doi.org/10.1016/j.physrep.2008.09.003
http://dx.doi.org/10.1016/j.physrep.2008.09.003

