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We propose a method for quantization of Lagrangians for which the Hamiltonian, as a function of

momentum, is a branched function, possibly with cusps. Appropriate boundary conditions, which we

identify, ensure unitary time evolution. In special cases a dual (canonical) transformation maps the

problem into a problem of quantum mechanics on singular spaces, which we also develop. Several

possible applications are indicated.
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Physically interesting models based on quantum me-
chanics are often obtained by quantizing classical systems.
The construction of a quantum model from a classical one
requires a quantization prescription, which should satisfy
several guiding principles: it should result in a model that
reproduces, approximately, the original classical dynamics
in appropriate limits; it should preserve appropriate
symmetries; and it should exhibit unitary time evolution.
These principles can be applied to the quantization of a
wide variety of classical Hamiltonian systems, but they do
not guarantee a unique result. (For example, there can
be inequivalent quantizations associated with different
self-adjoint extensions of the Hamiltonian [1].) There are
also important, but less fully developed and possibly less
rigorous, procedures using path integrals that allow one to
pass directly from classical Lagrangian systems, including
some singular ones, to quantum models [2]. In any case,
we should regard the construction of quantum models as a
creative process, open to innovation. Here we propose
methods for quantizing broad classes of classical systems
with branched structures in either momentum or position
space. We also suggest several applications.

Branched quantization.—Recently [3,4], we were led
to consider Lagrangians involving higher than quadratic
powers of the time derivatives, and specifically the decep-
tively simple

L ¼ 1

4
_x4 � �

2
_x2: (1)

In the interesting case � > 0, the Hamiltonian for this
Lagrangian is singular. Since the momentum involves a
cubic in velocity,

p ¼ _x3 � � _x; (2)

we can have either one or three real values of _x correspond-

ing to a given value of p, depending on the sign of j _xj� ffiffiffi
�
3

p
.

Thus, the energy function

E ¼ @L

@ _x
_x� L ¼ 3

4
_x4 � �

2
_x2; (3)

expressed in terms of p, is a multivalued function with
cusps. See Fig. 1 in Ref. [3].
Because the Hamiltonian based on Eqs. (2) and (3) is not

a single-valued function of p, and yet energy must surely
qualify as an observable, p does not supply a complete set
of commuting observables. Therefore it will not be suffi-
cient to label states with wave functions in (conventional)
momentum space. On the other hand, E is a single-valued
function of _x, so we might expect to construct wave func-
tions c ð _xÞ. As _x runs monotonically from �1 to 1, the
evolution of pð _xÞ is nonmonotonic, reversing direction at
the cusps. This suggests that we consider wave functions
that depend on p locally, but accommodate backtracking.

Thus, denoting by p� � � ffiffiffi
�
3

p
the cusp points, we have

three components to the wave function, namely, c 1ðpÞ for
�1<p � pþ, c 2ðpÞ for p� � p � pþ, and c 3ðpÞ for
p� � p <1. All three components cover the range
p� � p � pþ.
A crucial issue is how the different branches join

together; i.e., what are the appropriate boundary

(a)

(b) (c)

FIG. 1. (a) A wire with kinks. (b) A wire network with two
junctions. (c) Box graph for a network with four junctions and a
loop.
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conditions? It is instructive to consider a more general
class of Lagrangians than Eq. (1), bringing in a quadratic
potential VðxÞ ¼ 1

2�x
2. Directly from the Schrödinger

equation we have an equation for the probability density
��ðp; tÞ � c �ðp; tÞ�c �ðp; tÞ, defined on the branch

labeled by � (where � ¼ 1, 2, 3 for p� < p< pþ,
� ¼ 1 for p < p�, and � ¼ 3 for p > pþ):

@��

@t
¼ i ½c �

�Hc � � ðH�c �
�Þc ��

¼ � i�

2

�
c �

�

@2c �

@p2
� @2c �

�

@p2
c �

�
(4)

using, in the second step, VðxÞ ! Vði @
@pÞ. This substitution

implements the basic Heisenberg commutation relation,
and also reflects the role of p as the generator of spatial
translations. From Eq. (4) we infer an equation of the
current-conservation type for � � P

��:

@�

@t
þ @j

@p
¼ 0; j � X

�

i�

2

�
c �

�

@c �

@p
� @c �

�

@p
c �

�
:

(5)

Equation (4) will lead to conservation of the integrated
probability

R
� if we can drop contributions from j at

the end points. (Note that j receives contributions from
two branches at each end point p�.) We also require our
boundary conditions to be linear, so that our Hilbert space
will support superposition, and so that they lead to a
physically sensible eigenvalue problem for H. The choices

c 1ðpþÞ ¼ c 2ðpþÞ; @c 1

@p
ðpþÞ ¼ �@c 2

@p
ðpþÞ (6)

and their analogues at p� manifestly give the required
cancellation in j. Now consider the eigenvalue problem
for the time-independent Schrödinger equation. For� � 0,
we get a second-order differential equation for c ðpÞ. Thus,
on each branch, for each value of energy, there are two
disposable constants, making six altogether. Equation (6)
gives us four constraints among these constants, and nor-
malizability (absence of growing modes) at p ! �1 gives
us two more (one for each of c 1, c 3). Thus the number of
constraints matches the number of constants, as in conven-
tional quantum potential theory.

If � ¼ 0 the derivative conditions in Eq. (6) are not
required and should not be imposed, while if V is a higher-
order polynomial, we must require augmented boundary
conditions. We will discuss those presently, after introduc-
ing a different (dual) viewpoint.

Dual viewpoint.—One can hardly fail to notice that the
manipulations we performed in momentum space, in con-
nection with probability conservation, resemble manipula-
tions usually performed in position space. Thus it is natural
to consider what our models look like after the substitution
p ! x, x ! �p, which preserves the structure of quantum
mechanics. After this substitution, our multivalued kinetic

energy becomes something perhaps less unconventional,
that is, a multivalued potential. We may think of a wire
with kinks, as in Fig. 1(a). Intermediate values of x are
triply represented, and physical conditions will be different
at different points along the wire, even if they are repre-
sented by the same x, so a branched wave function is
manifestly appropriate to describe this physical system.
From this dual point of view our quadratic potential

VðxÞ ! VðpÞ ¼ 1
2�p

2 becomes the conventional kinetic

energy of a particle with mass m ¼ 1=�, and the branched
kinetic term becomes a multivalued potential WðxÞ in
position space. Thus we havewave functions c 1ðxÞ defined
for �1< x � xþ subject to W1ðxÞ, c 2ðxÞ defined for
x� � x � xþ subject to W2ðxÞ, and c 3ðxÞ defined for
x� � x <1 subject to W3ðxÞ, and boundary conditions
similar to Eq. (6), after the obvious substitutions of x for p.
Now let us consider a quartic potential VðxÞ ¼

x4 þ �x3 þ �x2 þ �x. In dual variables this leads to a
kinetic energy that is a quartic polynomial in p, H ¼ p4 �
�p3 þ �p2 � �pþWðxÞ. We find a probability current
(in the dual x space)

j ¼ 1

i

�
c y @

3c
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� @c y

@x
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@x2
þ @2c y

@x2
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c
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c y @c

@x
� @c y

@x
c

�
þ �c yc ; (7)

where c is a column vector with the requisite number of
components c � in each momentum range. We will ensure

conservation of probability with the boundary conditions

@nc 1

@xn
¼ ð�1Þn @

nc 2

@xn
; 0 � n � 3; (8)

at the kinks, provided that� and � change sign between the
branches. This augmentation of the boundary conditions
also leads to a good eigenvalue problem, since we have
both twice as many disposable constants and twice as many
conditions as in the quadratic case.
Inspired by the wire analogy it is natural to consider

networks analogous to the geometries of electric circuit
theory, where we put quantum dynamics on graphs [5,6].
Let us consider what is required to ensure no flow of
probability into a node where several lines indexed by �
come together. If the momentum dependence on each
line is simply p2, and we orient each line so all coordinates
x� flow into the node, then the ‘‘Kirchhoff’’ boundary
conditions

c 1 ¼ c 2 ¼ � � � ; X
�

@c �

@x�
¼ 0; (9)

ensure that no probability accumulates at the node. These
natural conditions give good eigenvalue problems for the
‘‘Compton’’ tree graph and the box graph displayed in

PRL 109, 200402 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

16 NOVEMBER 2012

200402-2



Figs. 1(b) and 1(c) (and many others). In the Compton
graph, Eq. (9) yields 2� 3 ¼ 6 conditions at the two
nodes, which together with four conditions at infinity for
the external legs gives 10 conditions, as is appropriate to
five lines with two disposable constants each. In the box
graph, Eq. (9) yields 4� 3 ¼ 12 conditions at the four
nodes, which together with four conditions at infinity gives
16 conditions, as is appropriate for eight lines with two
disposable constants each. Though it is simple and natural,
this is by no means the only possible setup consistent with
the general requirements of the framework of quantum
mechanics [5]. We can vary both the Hamiltonians and
the boundary conditions.

Unfolding.—Quadratic models with branching in the
dual viewpoint can be unfolded, upon which the eigenvalue
problem assumes a conventional form. In equations: If we
define a real variable � with

� � x� xþ þ x� for � � x�;

� � �xþ xþ þ x� for x� � � � xþ;

� � xþ xþ � x� for xþ � �;

(10)

then as � evolves monotonically from �1 to 1 it covers
each branch of x uniquely (as _x covered p in our earlier
discussion). The boundary conditions Eq. (6), with p ! x
become, upon transcription into the unfolding variable �,
the statement that c ð�Þ and its derivative are continuous.
Similarly, the boundary conditions Eq. (8) for quartics
unfold into continuity for c ð�Þ and its first three
derivatives.

Potentials.—Now we return to our original problem, the
issue of quantizing the kinetic Lagrangian of Eq. (1) allow-
ing for a general potential VðxÞ. Inspired by the preceding
unfolding procedure, we formulate our wave function in
terms of a variable that locally reduces to �p plus a c
number, but covers all three branches following the same

flow directions as _�. Thus we introduce

	 � p� pþ þ p� for 	 � p�;

	 � �pþ pþ þ p� for p� � 	 � pþ;

	 � pþ pþ � p� for pþ � 	;

(11)

and the decomposition of wave functions

c ð	Þ ¼ c ð	Þ½1�Hð	� p�Þ� þ c ð	Þ½Hð	� p�Þ
�Hð	� pþÞ� þ c ð	ÞHð	� pþÞ

� c 1ð	Þ þ c 2ð	Þ þ c 3ð	Þ; (12)

where H is the Heaviside function. In this formulation p is
realized (piecewise) as a modified multiplication operator,
with slightly different modifications on each branch. We
can use that fact to write the operator V as an explicit
kernel in 	 space. Thus we transform c 1ð	Þ to x space,
where V acts as multiplication, and transform back as
follows:

uðxÞ�
Z
eipxc 1ðpÞdp2
¼

Z
eið	0þpþ�p�Þxc 1ð	0Þd	

0

2

;

ðV̂uÞðxÞ¼VðxÞuðxÞ;

ðV̂c 1Þð	Þ¼
Z
e�ipxðV̂uÞðxÞdx¼

Z p�

�1
K1ð	�	0Þc ð	0Þd	

0

2

;

K1ð	�	0Þ¼
Z
e�ið	�	0ÞxVðxÞdx: (13)

Note that the result of V̂ acting on c 1 generally does not
vanish for 	 > p�. It is realized as an operator of the
Wiener-Hopf type.
Performing the same manipulations in the other inter-

vals, we arrive at K2 ¼ K�
1 , K3 ¼ K1, and

ðV̂c Þð	Þ ¼
Z
½K1ð	� 	0Þc 1ð	0Þ þ K2ð	� 	0Þc 2ð	0Þ

þ K3ð	� 	0Þc 3ð	0Þ�d	0: (14)

The peculiarity of K2 arises from the reversed flow of p, as
a function of 	, in the medial interval. In the symmetric

case VðxÞ ¼ Vð�xÞ all the K’s are real and equal, and V̂
becomes an ordinary convolution operator.
If VðxÞ is not symmetric, however, we must reconsider

our procedure, because the V̂ defined in Eq. (14) is not
Hermitian. Indeed, although each Kj satisfies the

Hermiticity conditionKjð	0; 	Þ ¼ K�
j ð	; 	0Þ, the full kernel

Kð	0;	Þ¼K1ð	0;	Þ½1�Hð	�p�Þ�þK2ð	0;	Þ½Hð	�p�Þ
�Hð	�pþÞ�þK3ð	0;	ÞHð	�pþÞ (15)

does not. Thus, to reach a consistent quantization we must
impose K2 ¼ K1 also (and not K2 ¼ K�

1). The sign
changes for � and � required in Eq. (8) foreshadowed
this conclusion. By adopting this modified quantization
condition, we lose the Heaviside functions and arrive at a
(manifestly Hermitian) convolution. The modified quanti-
zation condition entails that the basic commutation relation
½	; x� ¼ �i involves the unfolded 	, not the mechanical p.

For long-range potentials VðxÞ the formal definition of V̂
by Fourier transformation leads to derivatives of � func-
tions, which must be defined through integration by parts
on the momentum-space wave functions. In this way we
make contact with our earlier discussion of polynomial
potentials, and see why smoothness conditions connecting
the different zones in c are required, that become more
demanding as the order of V increases.
After this work, the mathematical eigenvalue problem is

well defined and amenable to standard mathematical tech-
niques. Several examples of branched quantization are
analyzed quantitatively in Ref. [7].
Another unfolding method.—An alternative and natural

choice of an unfolding coordinate for p is _x. The phase
space coordinates (x, _x) are noncanonical, but one can
formulate a symplectic structure, Hamiltonian, and
Poisson bracket for them [8], which reduce to the following
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forms in the momentum range for which the map between
_x and p is invertible:

fF;Gg ¼ 1

3 _x2 � �

�
@F

@x

@G

@ _x
� @F

@ _x

@G

@x

�
;

Hðx; _xÞ ¼ 3

4
_x4 � �

2
_x2 þ VðxÞ:

(16)

With this structure Hamilton’s equation _F ¼ fF;Hg repro-
duces the equation of motion derived from Eq. (1). In this
Hamiltonian formulation time evolution is uniquely

defined except at _x ¼ � ffiffiffiffiffiffiffiffiffi
�=3

p
, where the symplectic struc-

ture degenerates and nondeterministic motion may occur
[3]. The Poisson bracket in Eq. (16) suggests an alternative
approach to quantization [9].

First-order Lagrangians.—Other wide classes of simple,
regular Lagrangians lead to Hamiltonians with cusps or
multivaluedness. Consider specifically

Lðc �; c Þ ¼ fðc �; c Þ@tc � Vðc �; c Þ: (17)

The canonical momentum associated with c is 
c ¼
fðc �; c Þ while the Hamiltonian is numerically
Vðc �; c Þ, but expressed as a function H ¼ Vðc ; 
c Þ of
the dynamical variable c and its conjugate momentum

c . We may also require that L be real up to a total time

derivative, formally motivated by Hermiticity, or unitarity
in the path integral formulation. The simplest, most con-
ventional form, widely used in many-body physics [10], is
f ¼ ic �. But we can also have, for example,

fn ¼ ic �nc n�1;

f~n ¼ �c �n@tc � n��c �c n�1@tc ;
(18)

or (real) linear combinations thereof. At points where the
implicit function theorem fails, i.e., @f=@c � ¼ 0, we can
expect to have singularities in Hð
c ; c Þ.

To make contact with our earlier discussion, let us
consider

L ¼ iðc �2c � �c �Þ@tc � Vðc �; c Þ;
V ¼ �ac �c þ bc �2c 2;

(19)

so that 
c ¼ iðc �2c � �c �Þ. Upon going to the real

section c � ¼ c , we reproduce the momentum of Eq. (2)
(with a conventional factor i). Taking ða; bÞ ¼ ð�2 ; 34Þ would
reproduce the corresponding Hamiltonian derived from the
Lagrangian of Eq. (1), with its cuspidal form. Now, how-
ever, we are invited to consider more general values of
those parameters. We find that multivaluedness of the
Hamiltonian is generic for � positive (but not for � < 0),
while occurrence of cusps is special. Cusps can occur when

the condition @f
@c � ¼ 0 occurs together with @H

@c � ¼ 0.

Generically the ‘‘singular’’ behavior, where the tangent is
vertical, occurs at different points from the minimum of the

energy. (There are also multiple points, where branches
intersect transversally.) The fact that in this broader context
the ‘‘singularities’’ are quite mild—from the point of view
of intrinsic curve theory, they are essentially coordinate
singularities—further recommends our quantization proce-
dure, which patches the branches together smoothly.
Comments:
1. A very common and fruitful procedure in analyzing

quantum many-body problems is to model the effect of
interactions on a given particle by an effective one-body
Hamiltonian (or Lagrangian), solving the one-body prob-
lem, and constructing a many-body wave function as a
suitable product, e.g., a Slater determinant. By widening
the class of candidate one-body Hamiltonians, we can hope
to extend this sort of analysis to wider classes of systems.
Dynamical mean field theory [11] generates complicated
time dependence in a time-translation invariant energy
functional, as a consequence of interactions. Polynomial
truncation of such time dependence, using substitutions of
the type ½xðtÞ � xðt� �Þ�n ! �n _xn [3], with retention of
spatial structure, brings us to the sort of models considered
above.
2. More generally, we might model specific examples of

quasiparticles this way. ‘‘Swallowtail’’ structures [12]
similar to Fig. 1 in Ref. [3] have appeared in the description
of Bose-Einstein condensates in lattice traps [13] and in
studies of Lieb-Lininger models [14]. In this context the
first-order Lagrangians discussed above are very plausible
effective field theories, since their structure is quite similar
to that of the microscopic model.
3. A particularly interesting case arises for periodic

potentials VðxÞ. In that case, famously, conventional ki-
netic terms lead to band structures: The energy becomes a
multivalued function of the quasimomentum. Our
branched Hamiltonian already for V ¼ 0 has a sort of
band structure, associated with the branches, in a region
of momentum p� < p< pþ where the limiting p�, pþ
are determined by the form of the kinetic energy, not by
any spatial periodicity. With a periodic potential added,
both sources of banding are effective. Especially interest-
ing is the possibility of describing dynamically induced
insulating behavior (Mott phenomenon) at filling fractions
determined dynamically by the value of �.
4. Our earlier work on time crystals was somewhat

schizophrenic. In the classical case [3], we found systems
with motion in their ground state using kinetic Lagrangians
of the type considered above. In the quantum case [4],
not knowing how to treat such Lagrangians, we used a
different mechanism, based on a more conventional
kinetic term, that depended on the discreteness of
(generalized) quantum angular momentum. A possible
experimental realization has been proposed [15]. With
the method here described we can quantize the
classical time crystals, and thereby construct much
more general candidate models of quantum time crystals.
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5. We initially passed to the dual models to guide our
intuition, but they appear to have considerable independent
interest. The central observation is that appropriate,
fairly simple boundary conditions, both on wave functions
and (odd) interactions, appear to allow construction of
unitary quantum mechanics on a wide variety of singular
manifolds. One can even relax the boundary conditions, at
the cost of allowing probability to flow into and out
of the designated points—in other words, by allowing
the points to have internal degrees of freedom. This
procedure appears natural, specifically, in the modeling
of black holes, where (in the Euclidean formalism) the
horizon appears as a sphere attached to a point.

To summarize: We have proposed a method for quantiz-
ing a broad class of classical models that previously eluded
consistent theoretical treatment. To do so we had to
address some fundamental issues, and even to tinker with
the usual Heisenberg commutation relations. We also indi-
cated, with useful concreteness, some immediately prom-
ising applications.
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