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The liquid and crystal phases of a single-component Fermi gas with dipolar interactions are investigated

using quantum Monte Carlo methods in two spatial dimensions and at zero temperature. The dipoles are

oriented by an external field perpendicular to the plane of motion, resulting in a purely repulsive 1=r3

interaction. In the liquid phase we calculate the equation of state as a function of the interaction strength

and other relevant properties characterizing the Fermi-liquid behavior: effective mass, discontinuity at the

Fermi surface, and pair correlation function. In the high density regime we calculate the equation of state

of the Wigner crystal phase and the critical density of the liquid to solid quantum phase transition. Close to

the freezing density we also search for the existence of a stripe phase, but such a phase is never found to be

energetically favorable.
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The recent rapid developments in the field of ultracold
dipolar atoms and molecules have opened up new fasci-
nating prospects for investigating many-body effects in
quantum degenerate gases with long-range interactions
(for a review see, e.g., Ref. [1]). In this respect, single-
layer and multilayer configurations of two-dimensional
fermions are particularly intriguing because of the com-
peting interplay, depending on the strength of the dipolar
interaction and on the distance between layers, between
Fermi-liquid behavior, superfluid pairing, crystal order,
and density-wave instabilities [2–11].

Fermionic molecules of 40K87Rb, which can have a
strong electric dipole moment, have been created using
coherent transfer of Feshbach molecules to their rovibra-
tional ground state [12] and have been brought toward the
quantum degenerate regime [13]. Other fermionic mole-
cules are now being actively studied experimentally
[14,15]. Atomic species with a large magnetic moment,
such as dysprosium, offer a different possibility of realiz-
ing degenerate Fermi gases of dipoles which was success-
fully pursued, although for the moment only in the weakly
interacting regime, in the experiment of Ref. [16].

A particularly simple geometrical arrangement of a
single-component dipolar Fermi gas in 2D is when the
dipoles are oriented perpendicular to the plane of motion
by means of a sufficiently strong external field. This con-
figuration has been proven to greatly suppress the chemical
reaction rate of molecules, thereby enhancing their lifetime
[17]. Here particles at distance r interact via a purely
repulsive, rotationally symmetric, and long range 1=r3

potential. Still the phase diagram at zero temperature is
expected to be quite rich: interlayer dimers and a novel
BCS-BEC superfluid crossover are predicted in bilayer
systems [5], while in-plane and out-of-plane density
ordered phases are predicted in multilayer systems [6,7].
In the case of a single layer, a Fermi liquid with peculiar
scattering properties is stable at low density [10] and a

Wigner crystal emerges at high density, where the classical
potential energy of dipoles largely exceeds their kinetic
energy. For intermediate values of the interaction strength
an instability at finite wave vector is predicted to set in
[3,4,9], driving the system to a stripe phase that breaks both
rotational and translational symmetry (in the direction
perpendicular to the stripes). A similar scenario, involving
microemulsion phases (e.g., stripes or bubbles), is expected
for the melting of the Wigner crystal at T ¼ 0 in a 2D
Coulomb gas [18]. These results are derived within a
mean-field approach: an important question concerns the
quantitative determination of the phase diagram using more
accurate theoretical tools, such as quantum Monte Carlo
(QMC) techniques [19].
In this Letter we examine a 2D system of N identical

fermionic particles of mass m that interact with the
Hamiltonian

H ¼ � @
2

2m

X
i

r2
i þ

X
i<j

d2

r3ij
; (1)

where rij is the distance between particle i and j, and d is

the intensity of the electric (or magnetic) dipole moment.
The strength of the dipolar interaction is conveniently
expressed in terms of the dimensionless parameter kFr0,
where r0 ¼ md2=@2 is the characteristic length of the

dipole-dipole force and kF ¼ ffiffiffiffiffiffiffiffiffi
4�n

p
is the Fermi wave

vector of the 2D gas determined by the density n. The
energy scale set by kF is the Fermi energy �F ¼ @

2k2F=2m.
As a function of kFr0 we investigate the ground-state
properties of the Fermi-liquid phase including the equation
of state, the effective mass, the discontinuity of the mo-
mentum distribution at kF, the pair correlation function,
and the static structure factor. By comparing the energy of
the Fermi liquid (FL) and of the Wigner crystal (WC)
phase, we determine the value kFr0 ¼ 25� 3 of the
freezing density. Furthermore, in the region of interaction
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strengths close to freezing, we calculate the energy corre-
sponding to a stripe phase finding that it is never favorable
compared to the FL and WC state. The main results on the
equation of state are shown in Fig. 1 in units of the Hartree-
Fock energy

EHF ¼ N
�F
2

�
1þ 128

45�
kFr0

�
; (2)

corresponding to the lowest order perturbation expansion
of the FL in the interaction parameter kFr0 [3,10].

We use the fixed-node diffusion Monte Carlo
(FN-DMC) method, a projector technique that, starting
from an antisymmetric trial wave function c T , finds the
state having the lowest energy compatible with the many-
body nodal surface of c T that is kept fixed during the
calculation. The method provides a rigorous upper bound
to the energy of the fermionic ground state [20].

Simulations are performed in a box of volume V ¼
LxLy, where we always take Lx � Ly. The density is

n ¼ N=V and we use periodic boundary conditions
(PBCs) in both spatial directions. Since the dipole-dipole
interaction is long range, the potential energy contribution
to the Hamiltonian, given by the second term in Eq. (1),
requires a careful treatment

Vdd ¼ X
i<j

d2

jri � rjj3
þ 1

2

X
i;j

X
R�0

d2

jri � rj �Rj3 ; (3)

where i and j label particles in the simulation cell and the
vectors riðjÞ þR correspond to the positions of all images

of particle iðjÞ in the array of replicas of the simulation cell.
The combination of all images has the same average den-
sity n of the simulation box and provides a good approxi-
mation of the homogeneous medium. In the case of the
Coulomb potential the summation in (3) is carried out by
means of the Ewald method [20]. For the faster convergent
1=r3 potential, the mean interaction energy can be eval-
uated using the simpler formula

hVi ¼ ðVddÞRc
þ Vtail; (4)

where ðVddÞRc
denotes the sum (3) with the constraint

jri � rj �Rj � Rc and Vtail ¼ �nd2=Rc is the contribu-

tion from distances larger than Rc assuming a uniform
distribution of particles. The cut-off length Rc is chosen
large enough (Rc ¼ 2Lx) to yield an average interaction
energy hVi that is independent of Rc, within statistical
uncertainty.
Fermi-liquid phase.—The trial wave function describing

the FL phase is assumed to be of the Jastrow-Slater form

c Tðr1; . . . ; rNÞ ¼
Y
i<j

fðrijÞ det½eik��ri�: (5)

Here k� ¼ ð2�=LÞðnx�; ny�Þ with nx;y� ¼ 0;�1;�2; . . . are
the wave vectors complying with PBCs in the square box
(Lx ¼ Ly ¼ L) and fðrÞ is a non-negative function satisfy-
ing the boundary condition f0ðr ¼ L=2Þ ¼ 0. The short-

range behavior of fðrÞ is of the form fðrÞ / K0ð2
ffiffiffiffiffiffiffiffiffi
r0=r

p Þ,
where K0 is the modified Bessel function, and fulfills the
cusp condition of the atomic potential [21].
A delicate issue related to QMC calculations of

the equation of state is the extrapolation to the thermody-
namic limit (TL). In the FL phase apart from the size
dependence affecting the potential energy contribution,
which we treat using the procedure in Eq. (4), significative
shell effects are present in the kinetic energy contribution.
We consider closed-shell configurations corresponding to

25 � N � 81 for which the relative error j�TNj=Eð0Þ
TL ¼

jEð0Þ
N =Eð0Þ

TL � 1j in the energy of the noninteracting gas
compared to the TL can be as large as�1%. An extrapola-
tion method based on FL theory is provided by the fitting
formula [22]

EN ¼ ETL þ m

m� �TN þ a

N
; (6)

which involves the parameter m=m�, determining the in-
verse effectivemass of the particles, and the coefficient a of
the residual size dependence assumed to be linear in 1=N.
HereEN is the QMC output energy of theN-particle system
with the potential contribution evaluated using Eq. (4). The
values of EN ��TN are shown as red symbols in Fig. 2.
Their scattered dependence on 1=N is considerably sup-
pressed if one accounts for the effective mass, as it is shown
by the green symbols corresponding to EN � ðm=m�Þ�TN .
A more reliable convergence to the TL is obtained
using the method of twist-averaged boundary conditions
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FIG. 1 (color online). Equation of state of the liquid and solid
phase in units of the Hartree-Fock energy (2). Red circles refer to
the liquid and green triangles to the solid. The red dashed line
corresponds to the second-order expansion in Ref. [10]. The
purple dashed horizontal line and solid line correspond, respec-
tively, to the classical energy of the Wigner crystal and to the
result of Ref. [29] including the first correction arising from the
zero-point motion of phonons. Inset: Energy difference between
the solid and the liquid (blue circles) and between the stripe
phase and the liquid (black circles). The blue solid line is
obtained from a best fit to the equation of state of the liquid
and solid phase. Error bars are smaller than the size of the
symbols and are comparable in the three phases.
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(TABCs) [23]. Here the PBC wave vectors of the plane
waves in the Slater determinant of Eq. (5) are replaced by
k�ð�Þ ¼ ð2�=LÞðnx� þ �x; n

y
� þ �yÞ, where �x, �y are con-

tinuous variables in the interval [0, 1]. In the grand canoni-
cal implementation of the TABCs described inRefs. [23,24]
the wave vectors are constrained by jk�ð�Þj< kF and dif-
ferent values of the twist � can correspond to different
numbers of particles. The number of particles �N and the
energy E �N are obtained from averages over all possible
twist angles. With our use of TABCs we still find a residual
size effect �T �N [25]. The extrapolation to the TL is per-
formed using Eq. (6) and statistical agreement in ETL

between PBCs and TABCs is obtained for all values of the
density (see Fig. 2).

The FN-DMC results of the ground-state energy using
TABCs are reported in Fig. 1. At low density we find good
agreement with the result E ¼ EHF þ ðN�F=8ÞðkFr0Þ2 �
logð1:43kFr0Þ, which was derived in Ref. [10] including
corrections to the lowest order expansion (2).

The effective mass m� obtained from Eq. (6) is shown
in Fig. 3 for different values of kFr0. At weak coupling our
results well reproduce the perturbation expansion reported
in Ref. [10], but for larger couplings the reduction of m� is
less pronounced than the perturbative prediction andm�=m
approaches the value 0.4 for kFr0 close to freezing. From
the discontinuity at kF of the momentum distribution pa-
rametrized by nk ¼ Z�ðkF � kÞ þ gðkÞ, where �ðxÞ is the
step function and gðkÞ is a continuous function of k, we
extract the renormalization factor Z. Results are reported in
Fig. 3. In the inset of Fig. 3 we show nk in the strongly
interacting regime for different numbers of particles. It
is worth noticing that finite size effects on this quantity
are much less severe here than in the 2D Coulomb gas
[26] and are similar to the case of the hard disks inves-
tigated in Ref. [27].

Finally, we calculate the pair correlation function
gðrÞ giving the probability of finding two particles at the

distance r. Results for different values of kFr0 in the
FL phase are shown in Fig. 4. One should notice that
by increasing the interaction strength the short-range
repulsion increases and a shell structure starts to appear
on approaching the freezing density. The Fourier trans-
form of gðrÞ yields the static structure factor SðkÞ ¼
1þ n

R
dreik�r½gðrÞ � 1�. This quantity can also be calcu-

lated directly in the FN-DMC algorithm by evaluating the
average of the product of density fluctuation operators

NSðkÞ ¼ h�k��ki ¼ hPi;je
ik�ðri�rjÞi. Results are reported

in Fig. 5 for both estimators [28]. For large values of kFr0,
the direct estimator exhibits a more pronounced peak com-
pared to the smoother Fourier transform at the wave vector
corresponding to the lowest nonzero reciprocal lattice vec-
tor of the triangular lattice.
Wigner crystal phase.—To describe the WC phase we

make use of the following trial wave function

c Tðr1; . . . ; rNÞ ¼
Y
i<j

fðrijÞ det½e�ðri�RmÞ2=�2�; (7)

where the Jastrow correlation term fðrÞ is the same as in
the FL phase and the single-particle orbitals in the deter-
minant are constructed with Gaussians, whose width � is a
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FIG. 2 (color online). Finite size effects in a Fermi liquid at the
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FIG. 4 (color online). Pair correlation function in the liquid
and in the crystal phase. The pair correlation function of the
noninteracting gas is also shown.
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variational parameter, centered at the lattice points Rm of
the triangular Bravais lattice. In order to enforce PBCs,
both the number of particles N and the box sizes Lx and Ly

must be multiples of a primitive cell, which can be chosen

as a rectangle of side lengths ‘y ¼
ffiffiffi
3

p
‘x containing two

atoms. Extrapolation to the thermodynamic limit is
obtained using a linear fit in 1=N over the FN-DMC
energies. The results for the WC equation of state are
reported in Fig. 1. It is worth noticing that the antisym-
metric constraint imposed in the wave function (7) for
particle exchange is negligible for the value of the energy.
In fact, statistically compatible results are obtained with a
nodeless wave function of distinguishable boltzmanons in
agreement with the findings of Ref. [21]. This behavior is
expected at large density, where the energy of the WC
phase is given by the result [29]

EWC ¼ N
�F
2

kFr0
4

�
1:597þ 2:871ffiffiffiffiffiffiffiffiffiffi

kFr0
p

�
; (8)

obtained by including the contribution from the zero-point
motion of phonons to the purely classical interaction en-
ergy of a system of dipoles arranged in a triangular Bravais
lattice. The above expansion, holding for large kFr0, is
shown in Fig. 1 and is indeed approached by our QMC
results. The difference between the ground-state energy of
theWC and FL phase is shown in the inset of Fig. 1. From a
fit to the equation of state of the two phases we can
determine the intersection point at kFr0 ¼ 25� 3. This
value is almost a factor two smaller compared to the
critical density kFr0 � 60 [21,29,30] of an equivalent sys-
tem of bosons having the same mass, density, and dipolar
strength. This can be understood if one considers that the
equation of state of the crystal is practically independent of

statistics while the energy of the fermionic fluid is signifi-
cantly higher than the bosonic one. Large values of kFr0
should be achievable in future experiments with polar
molecules having large electric dipole moments, such as
NaK [14]. From the equation of state of the FL and WC
phase in the vicinity of the freezing density one can also
estimate the width of the region where phase separation
occurs. By imposing equilibrium of pressure and chemical
potential in the two phases, the coexistence region turns out
to be �ðkFr0Þ � 0:01, a very small value consistent with a
similar finding in the bosonic case [29]. We notice that,
according to Ref. [18], the value of �ðkFr0Þ sets the range
of densities where microemulsion phases, which drive the
liquid to solid transition, are predicted to appear. The pair
correlation function and the static structure factor deep in
the crystal phase are shown respectively in Fig. 4 and 5. In
particular, SðkÞ exhibits a large peak at k ¼ 1:90kF corre-
sponding to the lowest nonzero wave vector of the recip-
rocal lattice.
Stripe phase.—A pattern of equally spaced stripes is

assumed in the y direction corresponding to the trial
wave function

c Tðr1; . . . ; rNÞ ¼
Y
i<j

fðrijÞ det½eik�xxi�ðyi�yaÞ2=�2�; (9)

where the Jastrow factor is the same as in the FL and WC
phase, ya denotes the y coordinate of the ath stripe and
k�x ¼ 2�n�x=Lx are the PBC wave vectors in the x direc-
tion. The number of fermions is the same in each stripe and
once multiplied by the number of stripes determines the
overall density in the volume V ¼ LxLy. First, using the

variational method, we optimize the width � of the stripes
and their separation �y ¼ jyaþ1 � yaj. For the latter quan-
tity we find that kF�y ¼ ffiffiffiffiffiffiffi

4�
p

is an optimal value corre-
sponding to a square box having Lx ¼ Ly. We then

perform FN-DMC simulations using PBCs with different
numbers of particles N and we extrapolate to the thermo-
dynamic limit relying on a 1=N linear fit. The results are
shown in the inset of Fig. 1, where we report the energy
difference between the stripe and FL phase. For all values
of kFr0 in the vicinity of the freezing density the stripe
phase is never energetically favorable compared to the FL
or the WC phase.
In conclusion, we investigated the ground state of a

purely repulsive system of dipolar fermions and its liquid
to solid transition. Important extensions of this work con-
cern the effect of a tilting angle, making the interaction in
the 2D plane anisotropic, and the coupling to a second
layer inducing interlayer attraction.
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and M. Capone are gratefully acknowledged. This work
has been supported by ERC through the QGBE grant.
Calculations were performed on the AURORA supercom-
puter at Fondazione Bruno Kessler.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.5  1  1.5  2  2.5

S
(k

)

k/kF

ideal gas
 kF r0 =1.10
 kF r0 =6.14
 kF r0 =20.0

 7.8
 8

 8.2
crystal,
kF r0 =34.7

FIG. 5 (color online). Static structure factor in the liquid and in
the crystal phase (N ¼ 56). In the liquid phase, solid lines
correspond to the Fourier transform of gðrÞ while symbols
correspond to the direct calculation of SðkÞ. The static structure
factor of the noninteracting gas is also shown.

PRL 109, 200401 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

16 NOVEMBER 2012

200401-4



[1] M.A. Baranov, Phys. Rep. 464, 71 (2008).
[2] G.M. Bruun and E. Taylor, Phys. Rev. Lett. 101, 245301

(2008).
[3] Y. Yamaguchi, T. Sogo, T. Ito, and T. Miyakawa, Phys.

Rev. A 82, 013643 (2010).
[4] K. Sun, C. Wu, and S. Das Sarma, Phys. Rev. B 82,

075105 (2010).
[5] A. Pikovski, M. Klawunn, G.V. Shlyapnikov, and L.

Santos, Phys. Rev. Lett. 105, 215302 (2010).
[6] N. T. Zinner and G.M. Bruun, Eur. Phys. J. D 65, 133

(2011).
[7] M. Babadi and E. Demler, Phys. Rev. B 84, 235124

(2011).
[8] L.M. Sieberer and M.A. Baranov, Phys. Rev. A 84,

063633 (2011).
[9] M.M. Parish and F.M. Marchetti, Phys. Rev. Lett. 108,

145304 (2012).
[10] Z.-K. Lu and G.V. Shlyapnikov, Phys. Rev. A 85, 023614

(2012).
[11] J. K. Block, N. T. Zinner, and G.M. Bruun, New J. Phys.

14, 105006 (2012).
[12] K.-K. Ni, S. Ospelkaus, M.H. G. de Miranda, A. Pe’er, B.

Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne,
D. S. Jin, and J. Ye, Science 322, 231 (2008).

[13] S. Ospelkaus, K.-K. Ni, D. Wang, M.H. G. de Miranda, B.
Neyenhuis, G. Qumner, P. S. Julienne, J. L. Bohn, D. S.
Jin, and J. Ye, Science 327, 853 (2010).

[14] J.W. Park, C.-H. Wu, I. Santiago, T. G. Tiecke, S. Will, P.
Ahmadi, and M.W. Zwierlein, Phys. Rev. A 85, 051602
(R) (2012).

[15] M.-S. Heo, T. T. Wang, C. A. Christensen, T.M. Rvachov,
D. A. Cotta, J.-H. Choi, Y.-R. Lee, and W. Ketterle, Phys.
Rev. A 86, 021602(R) (2012).

[16] M. Lu, N.Q. Burdick, and B. L. Lev, Phys. Rev. Lett. 108,
215301 (2012).

[17] K.-K. Ni, S. Ospelkaus, D. Wang, G. Quemener, B.
Neyenhuis, M.H. G. de Miranda, J. L. Bohn, J. Ye, and
D. S. Jin, Nature (London) 464, 1324 (2010).

[18] B. Spivak and S. A. Kivelson, Phys. Rev. B 70, 155114
(2004).

[19] For the 2D Coulomb gas see B. K. Clark, M. Casula, and
D.M. Ceperley, Phys. Rev. Lett. 103, 055701
(2009).

[20] For more details see, e.g., J. Kolorenc̆ and L. Mitas, Rep.
Prog. Phys. 74, 026502 (2011).

[21] G. E. Astrakharchik, J. Boronat, I. L. Kurbakov, and Yu. E.
Lozovik, Phys. Rev. Lett. 98, 060405 (2007).

[22] D.M. Ceperley, Phys. Rev. B 18, 3126 (1978).
[23] C. Lin, F. H. Zong, and D.M. Ceperley, Phys. Rev. E 64,

016702 (2001).
[24] S. Chiesa, D.M. Ceperley, R.M. Martin, and M.

Holzmann, Phys. Rev. Lett. 97, 076404 (2006).
[25] The residual kinetic energy size error �T �N is too small to

allow for a meaningful extraction of the effective mass
ratio m�=m.

[26] M. Holzmann, B. Bernu, V. Olevano, R.M. Martin, and
D.M. Ceperley, Phys. Rev. B 79, 041308(R) (2009).

[27] N. D. Drummond, N. R. Cooper, R. J. Needs, and G.V.
Shlyapnikov, Phys. Rev. B 83, 195429 (2011).

[28] The functions nk, gðrÞ and SðkÞ have been calculated using
the extrapolation customary in DMC techniques [20].

[29] C. Mora, O. Parcollet, and X. Waintal, Phys. Rev. B 76,
064511 (2007).
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