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We report the high-resolution and broadband light-scattering spectroscopy of a single crystal of a

prototypical relaxor ferroelectric, PbðMg1=3Nb2=3ÞO3. A self-similar broad central peak, whose intensity is

expressed as Ið!Þ / !� has been observed, indicating the presence of a fractal in the crystal. A strong

correspondence exists between the temperature dependence of the exponent � and that of the reported

behaviors of polar nanoregions. The estimated fractal dimension (df � 2:6) at low temperatures clearly

indicates a percolation transition of the polar nanoregions at around 240 K.
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In recent years, materials with large response to external
fields have been studied widely and intensively in con-
densed matter physics. Relaxors are a class of disordered
crystals that exhibit large piezoelectric and dielectric
responses to external electric fields over wide temperature
ranges [1], in contrast to the Curie-Weiss behavior of
typical ferroelectrics. The large dielectric response and
diffuse temperature dependence of relaxors are mainly
useful for devices such as thermally robust, small capaci-
tors with high dielectric constants, or high-efficiency ultra-
sonic generators. Regardless of the intensive research
efforts aimed at improving the understanding of the nature
of relaxors, there remain many unanswered questions
regarding the dynamic behavior in wide time scales. It
has long been suggested that disorder, which is induced
by the frustration between the charge and structure, should
be the key, but little information is available regarding its
dynamics, in particular.

In this Letter, we report the self-similar quasielastic
light-scattering (QELS) spectrum of a single crystal of a
prototypical relaxor ferroelectric, PbðMg1=3Nb2=3ÞO3

(PMN). The spectrum is self-similar, or of a power-law
type, for over three decades of frequency. We also report
the temperature dependence of the power exponent,
which strongly corresponds to that of the static properties
of the so-called polar nanoregions (PNRs). [2–5] We dis-
cuss the existence of a fractal formed by the clusters of the
PNRs in the single crystal of PMN, which is paradoxical
with the view that fractals are usually found in noncrystal-
line disordered systems such as glasses, polymers, or gels.
Our analysis suggests that the dynamics of the diffuse
phase transition or freezing dielectric behavior of relaxors
may be characterized by the dynamics of the fractal per-
colation cluster of the PNR formed within the matrix of a
single crystal. An incipient state toward the percolation
transition of PNRs is thought to be responsible for the large
response of relaxors.

To obtain dynamical information in materials, light-
scattering techniques are widely employed [6]. We per-
formed light-scattering spectroscopy with frequencies
spanning 1 GHz to 23 THz, combining the spectra obtained
with a tandem Fabry-Perot (FP) interferometer and a triple
diffraction monochromator. The frequency range covers
the Rayleigh, Brillouin, and Raman scattering regimes.
The experimental setups for both the Rayleigh-Brillouin
and Raman scattering experiments were reported else-
where [7,8]. Backscattering geometry is adopted in all
cases, and the polarization direction of both the incident
and scattered light is perpendicular [horizontal-vertical
(HV)].
The samples were single crystals of PMN, and were

synthesized using the conventional columbite method.
The as-grown crystals were 5:0� 5:0� 0:3 mm3 with
cubic [100] axes, and the surfaces were polished to optical
quality. Other samples with smaller dimensions were also
investigated for comparison. The polarization direction of
the incident light was along the crystalline [110] direction
to minimize the Raman signal around 1350 GHz [8], which
can obscure the quasielastic scattering intensity. The
samples were placed in cryostats, and the temperature
was controlled to within �1 K at temperatures above
300 K and to within �0:1 K at temperatures below 300 K.
In Figs. 1(a)–1(d), we show the QELS spectrum of PMN

at room temperature [9]. The frequency ranges of the four
graphs in Figs. 1(a)–1(d) differ by a factor of approxi-
mately 4. The QELS spectrum clearly exhibits self-
similarity, [10], i.e., the spectrum always appears to be
an unshifted Lorentzian in any fixed frequency range.
Previously, the QELS in relaxors was analyzed by the
fitting of a single Lorentzian [11] or the sum of two
Lorentzians [12,13], which provided an average relaxation
time. However, since the combination of the summation of
Lorentzians is arbitrary, the central peak in relaxors should
be analyzed over a sufficiently wide frequency range in
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order to discuss the dynamics in detail. Recently, we
reported [9] that the intensity distribution of this QELS
(or central peak) spectrum obeys a power-law as Ið!Þ /
!�, which is plotted in Figs. 1(a)–1(d) as a solid black line
with a power exponent � ¼ �0:67.

Figure 2 shows the temperature dependence of the com-
bined light-scattering intensity spectrum obtained with a
tandem Fabry-Perot interferometer and a triple diffraction
monochromator, which span the frequency ranges from
1 GHz to 4 THz and 0.3 to 23 THz, respectively. In this
Letter, we refer to the former and latter spectra as Brillouin
and Raman spectra, respectively. The temperatures at
which the Brillouin and Raman spectra are recorded differ
by as much as 10% of the absolute value. Therefore, since
this figure is intended to show only the spectra over a wider
frequency range, our analyses were conducted mostly on
the Brillouin spectrum. Slight deviations were observed
between the Raman and Brillouin spectra at the frequency
shift of around 1.5 THz, where the sample alignment (the
angle between the light-polarization direction and crystal-
lographic [110] axis) significantly affects the scattering
intensity from the F2g phonon mode in Fm�3m symmetry

[8]. However, the lower frequency part of the spectrum was
found to be unaffected by a slight misalignment of the
sample, and the Raman and Brillouin spectra were success-
fully connected only by multiplying constants.

In the lower frequency range, namely, below 1 THz,
we observed straight-line spectra over a frequency range
as wide as more than three decades in the log-log plot
of Fig. 2. This is the power-law spectrum, which is ex-
pressed as I / ��, where I, �, and � are the intensity,
frequency, and power exponent, respectively. Since
log10I ¼ �log10�þ const, the slope of a straight spectrum
in the log-log plot equals the exponent of the power-law
spectrum. In Fig. 2, we observed that the spectrum at the

highest temperature (T ¼ 623 K) is almost horizontal in
the low-frequency region (& 1 THz), and it begins to tilt
to the higher frequency side as the temperature is lowered.
The tilting of the slope appears to cease at around 200 K.
Note that the intensity of the power-law component de-
creases on further cooling, but the slope (�) never changes
at lower temperatures. As a result, the low-frequency spec-
trum is clearly decomposed into the power-law and under-
damped soft-mode components [8,14].
In the low-frequency region, in addition to the quasi-

elastic intensity distribution, we observed a few inelastic
(shifted) peaks in the spectrum, namely, the Brillouin
scattering from longitudinal acoustic (LA) phonons, trans-
verse acoustic (TA) phonons, and surface acoustic waves
(SAW). Although scattering from the LA and TA phonons
is forbidden in the adopted geometry, they are visible
owing to leakage from the polarizer and the slight orienta-
tion of the sample crystal from the normal incidence of the
excitation light. On the other hand, the SAW mode was
visible both in HV and horizontal-horizontal geometries.
Because the frequency shift of the SAW peak was observed
to be proportional to the sine of the light-incident angle, it
was confirmed that the observed excitation propagates
along the sample surface. Although the observation and
analysis of the SAW in a single PMN crystal have not yet

FIG. 2 (color online). Temperature variation of the power-law
light-scattering spectrum observed in PMN. The open circles
that are connected by lines represent the spectra recorded by a
tandem FP (Brillouin spectra), and the solid lines are the spectra
recorded by a triple diffraction monochromator [8]. The tem-
peratures of the Brillouin and Raman spectra (indicated as
B- and R-, respectively, in the legend) are not exactly the
same, and differ by as much as 10%. The Brillouin spectra
above 500 K are not shown because of the poor signal-to-noise
ratio. The dashed lines are used as visual guides.

FIG. 1 (color online). Self-similar quasielastic light scattering
observed in PMN at 297 K. The frequency ranges of (a)–(d) are
[�1000, 1000 GHz], [�250, 250 GHz], [�60, 60 GHz], and
[�15, 15 GHz], respectively. The solid black line is a fit of the
power-law function; I / !�, with � ¼ �0:67. The LA, w, S,
and G denote the Brillouin scattering from the longitudinal
acoustic phonon, the cryostat window, the surface acoustic
wave, and the first order transmission from the interferometer
(ghost line), respectively.
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been reported, wewill not discuss this since it is outside the
scope of this Letter.

The emergence of the power-law spectrum suggests that
there is a wide distribution of relaxation times, because a
power-law intensity spectrum can be expressed as a super-
position of many Lorentzian (relaxational) spectra:

!� ¼ C
Z 1

0
½fð�Þ=ð1þ!2�2Þ�d� with fð�Þ ¼ ��ð�þ1Þ;

(1)

where � is the relaxation time andC is a constant defined as
C ¼ 2

� cos�þ1
2 �. Equation (1) represents the Curie-von

Schweidler law, which states that the power-law intensity
spectrum can be decomposed into an infinite number of
relaxational modes with a power-law distribution of
relaxation times. This is why the entire spectrum can be
reasonably reproduced by the superposition of a few
Lorentzians [12,13], and it always appears to be
like a Lorentzian in all frequency ranges, as shown in
Figs. 1(a)–1(d). Because relaxors are disordered systems
formed by the frustration between the charge and structure
[1], it is quite plausible that PMN has a wide distribution of
relaxation times. The distribution of relaxation times in
PMN or related relaxors has been reported by several
authors [15–18], and are typically in the lower frequency
ranges, namely, the subgigahertz region. However, none of
the authors have mentioned the existence of a power-law
distribution of �. It should be noted that there is a formal
correspondence between the Kohlrausch function (or so-
called stretched exponential decay) and the power-law
distribution of relaxation times [19].

The self-similarity of the power-law spectrum, or equiv-
alently, the existence of a power-law distribution of relaxa-
tion times [Eq. (1)], directly suggests that there is a
structural self-similarity [20], which is commonly known
as a fractal. In fractals, the (mass) density, �, scales as a
power of the distance r, i.e., �� rdf , where the exponent
df is the fractal dimension, which is generally a nonin-

teger. Ubiquitous in nature, fractals are also found in dis-
ordered systems such as glasses, polymers, and gels.
However, this strongly contrasts with the fact that our
samples were single crystals. Thus, we need to determine
the mechanism behind the formations of the fractal in
PMN. One possibility is that it is caused by the disordered
arrangement of Mg and Nb ions. It is known that PMN has
both chemically ordered (ion arrangement with Mg:Nb ¼
1:1) and disordered regions [1,14]. However, such an
arrangement is independent of temperature, as reported
recently [14]. Hence, the fractal structure due to the dis-
ordered ionic arrangement is ruled out, and the fractal in
PMN is probably formed by dynamic objects that exhibit a
strong temperature dependence. It has been recognized that
nanoscale polarized regions exist, which are referred to as
PNRs, in relaxors [1]. In PMN, after cooling from higher
temperatures, such polar regions begin to increase in

volume at around 600 K, which is often referred to as the
Burns temperature [21]. As the temperature is lowered, the
volume of the PNRs increases, and a percolation transition
is believed to occur, leading to the formation of an infinite
percolation cluster, which is generally a fractal with a
noninteger fractal dimension [22,23]. The fractals in relax-
ors have been mentioned by some authors [24–26], and
the percolation scenario in relaxors has been proposed
theoretically [27]. However, to the best of our knowledge,
convincing observations of fractal dynamics, e.g., a power-
law spectrum as wide as three decades, have not been
presented to date.
To study the fractal dynamics in PMN, instead of

analyzing the intensity spectrum, we consider the reduced
intensity [28], which is defined as Ið�Þ � �Ið�Þ=
½nð�Þ þ 1� ¼ ��00ð�Þ, where nð�Þ¼ ½expðh�=kBTÞ�1��1

is the Bose-Einstein factor, �00 is the imaginary part of the
susceptibility. It is known that the reduced intensity, I , is
proportional to the density of states of excitations in dis-
ordered systems [28]. In Fig. 3, we show the temperature
dependence of the reduced intensity spectrum in a log-log
plot for selected temperatures. Again, we observe that all
spectra have clear power-law distributions over three dec-
ades, i.e., Ið�Þ / ��, where � is the power exponent for
the reduced-intensity expression [29]. The temperature
dependence of � is plotted in Fig. 4. At around 600 K,
we observe that � is close to 2, while it decreases on
cooling, and approaches a constant at T & 240 K. The
high-temperature asymptotic value � ! 2 corresponds to
the spectrum of a phonon mode(s) because a damped
harmonic oscillator whose intensity is expressed as Sð!Þ ¼
!2

0�=½ð!2
0 �!2Þ2 þ!2

0�
2� yields a reduced intensity with

!2-dependence as ! ! 0. Because there are always a few
phononmodes at!=2� * 1000 GHz, as can be seen in the

FIG. 3 (color online). Temperature variation of the reduced
intensity, Ið�Þ � �Ið�Þ=½nð�Þ þ 1�, for selected temperatures.
The spectra are vertically shifted only by the multiplication of
constants for visual clarity. The solid straight lines represent the
least-square fits of the power function, I ¼ A��.
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Raman spectra, the !2 slope appears as a superposition of
such phonon modes if the power-law component in the
lower-frequency region is substantially weaker. Therefore,
at the highest temperature (> 600 K), there is little spectral
contribution from the power-law quasielastic component.
As the temperature decreases from above 600 K, the spec-
tral weight of the power-law component becomes domi-
nant. In Fig. 3, we observe that the slope of the reduced
intensity becomes less steep at temperatures lower than
600 K. The temperature change of � is most rapid at
temperatures slightly above 300 K, as we can also see
clearly in Fig. 4. The variation in the temperature of �
ceases at around 240 K, and remains constant until the
lowest temperature is reached. The asymptotic value at the
lowest temperature is found to be 1:33� 0:02 (shown by
the dashed line in Fig. 4) from line fitting to the data points
at and below 200 K. This overall temperature dependence
of � is in strong agreement with those reported for the
volume fraction [2,3] and the correlation length of the
PNRs [4,5].

Because no theory that is specific to relaxors has been
reported, we make a tentative comparison between our data
and the existing dynamic scaling theory for disordered
systems [20]. According to the percolation theory for dis-
ordered systems [20,23,30–32], the reduced intensity of the
light-scattering spectrum from an infinite percolation clus-
ter is given as

I ð!Þ �!�; with � ¼ ds

�
2d�
df

þ 1

�
� 1; (2)

where ds and d� � 1 are the spectral or fracton dimension

and the super-localization exponent, respectively.
Equation (2) relates the static exponents (d� and df) of a

percolation fractal to the dynamic ones (� and ds).
Assuming a nonlocalized excitation, and using the value
ofds calculated for a three-dimensional (3D) space, namely,

d� ¼ 1 and ds ¼ 1:32� 0:01 [23], we obtain a fractal

dimension in PMN at T & 200 K (where � ¼ 1:33�
0:02) of df ¼ 2:61� 0:09, which is in good agreement

with that obtained theoretically for an infinite percolation
cluster in a 3D space, df ¼ 2:53� 0:02 [23]. Therefore, in

PMN, the percolation transition of the PNRs at around
240 K is very likely. This explains the glass-like freezing
or the so-called Vogel-Fulcher behavior [27] of the tem-
perature dependence of the characteristic relaxation time in
relaxors, which has been a long-standing controversial
issue. The inset of Fig. 4 shows the temperature dependence
of the fractal dimension estimated from Eq. (2) assuming
constant d� and ds (1.0 and 1.32, respectively).

It should be noted that, in the temperature range in which
the large dielectric responses of PMN are found, namely
200 & T & 350 K, � has values greater than 1.33, which
gives df < 2:5. In such a case of the incipient state toward

percolation transition, the PNRs should be sufficiently
large to strongly respond to the external field, and still be
able to freely rotate or vibrate because there should still be
space between the adjacent PNRs. Therefore, the situation
as it approaches the percolation transition, i.e., a fractal
dimension slightly larger than 2, may be an important
condition that leads to large responses in relaxors and other
systems. Real-space microscopy or small-angle neutron
scattering that detect self-similar structures in relaxors
are strongly desired to directly determine the fractal di-
mension. Theories specific to fractal dynamics in relaxors
are also desired.
In summary, we reported the temperature dependence of

the power-law quasielastic light-scattering spectrum of a
single crystal of a relaxor PMN. The frequency of the
power-law spectrum was observed to be distributed for at
least three orders of frequency, ranging from below 1 GHz
to 1 THz. The temperature dependence of the power
exponent of the reduced intensity clearly indicated the
percolation transition of the PNRs at around 240 K. This
also indicated the existence of a fractal formed by the
PNRs in the single crystal. The fractal dimension at low
temperatures was estimated to be 2.61, whereas that for the
responsive temperatures was found to be slightly greater
than 2. The consideration of such an incipient state toward
the percolation transition may be useful in the design of
more responsive materials.
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M. Savinov, P. Vaněk, J. Petzelt, J. Holc, M. Kosec,

H. Amorı́n, and M. Alguero, Phys. Rev. B 79, 104111
(2009).

[19] W. Götze, Complex Dynamics of Glass-Forming Liquids
(Oxford University, New York, 2009).

[20] T. Nakayama, K. Yakubo, and R. L. Orbach, Rev. Mod.
Phys. 66, 381 (1994).

[21] G. Burns and F. H. Dacol, Phys. Rev. B 28, 2527
(1983).

[22] D. Stauffer and A. Aharony, Introduction To Percolation
Theory (CRC Press, Boca Raton, 1994).

[23] D. ben Avraham and S. Havlin, Diffusion and Reactions in
Fractals and Disordered Systems (Cambridge University
Press, Cambridge, England, 2000).

[24] S. Vakhrushev, A. Nabereznov, S. K. Sinha, Y. P. Feng, and
T. Egami, J. Phys. Chem. Solids 57, 1517 (1996).

[25] V. Shur, G. Lomakin, V. Kuminov, D. Pelegov,
S. Beloglazov, S. Slovikovskii, and I. Sorkin, Phys.
Solid State 41, 453 (1999); V. Y. Shur, G. G. Lomakin,
E. L. Rumyantsev, S. S. Beloglazov, D. V. Pelegov, A.
Sternberg, and A. Krumins, Ferroelectrics 299, 75
(2004).

[26] S. G. Lushnikov, S. N. Gvasaliya, and I. G. Siny, Physica
(Amsterdam) 263–264B, 286 (1999).

[27] R. Pirc and R. Blinc, Phys. Rev. B 76, 020101 (2007).
[28] R. Shuker and R.W. Gammon, Phys. Rev. Lett. 25, 222

(1970).
[29] It is worth noting that � is related to � (the power

exponent in the intensity expression) as � � �þ 2 if
h�=kBT 	 1, which is usually satisfied in the Brillouin
scattering regime.

[30] S. Alexander and R. Orach, J. Phys. (Paris), Lett. 43, 625
(1982).

[31] S. Alexander, O. Entin-Wohlman, and R. Orbach, Phys.
Rev. B 32, 6447 (1985).

[32] A. Boukenter, B. Champagnon, E. Duval, J. Dumas, J. F.
Quinson, and J. Serughetti, Phys. Rev. Lett. 57, 2391
(1986).

PRL 109, 197601 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

9 NOVEMBER 2012

197601-5

http://dx.doi.org/10.1103/PhysRevLett.90.205901
http://dx.doi.org/10.1103/PhysRevLett.90.205901
http://dx.doi.org/10.1103/PhysRevB.69.064112
http://dx.doi.org/10.1103/PhysRevB.81.144127
http://dx.doi.org/10.1103/PhysRevB.73.024303
http://dx.doi.org/10.1103/PhysRevB.73.024303
http://dx.doi.org/10.1002/jrs.v42.4
http://dx.doi.org/10.1002/jrs.v42.4
http://dx.doi.org/10.1080/00150193.2011.577365
http://dx.doi.org/10.1103/PhysRevLett.66.1334
http://dx.doi.org/10.1103/PhysRevLett.66.1334
http://dx.doi.org/10.1103/PhysRevB.56.7962
http://dx.doi.org/10.1063/1.1289909
http://dx.doi.org/10.1063/1.1289909
http://dx.doi.org/10.1063/1.2393159
http://dx.doi.org/10.1063/1.2393159
http://dx.doi.org/10.1103/PhysRevLett.103.207601
http://dx.doi.org/10.1103/PhysRevLett.103.207601
http://dx.doi.org/10.1051/jp4:2005128020
http://dx.doi.org/10.1002/pssc.v6:12
http://dx.doi.org/10.1016/j.jeurceramsoc.2006.02.003
http://dx.doi.org/10.1016/j.jeurceramsoc.2006.02.003
http://dx.doi.org/10.1103/PhysRevB.79.104111
http://dx.doi.org/10.1103/PhysRevB.79.104111
http://dx.doi.org/10.1103/RevModPhys.66.381
http://dx.doi.org/10.1103/RevModPhys.66.381
http://dx.doi.org/10.1103/PhysRevB.28.2527
http://dx.doi.org/10.1103/PhysRevB.28.2527
http://dx.doi.org/10.1016/0022-3697(96)00022-4
http://dx.doi.org/10.1134/1.1130801
http://dx.doi.org/10.1134/1.1130801
http://dx.doi.org/10.1080/00150190490429196
http://dx.doi.org/10.1080/00150190490429196
http://dx.doi.org/10.1016/S0921-4526(98)01359-3
http://dx.doi.org/10.1016/S0921-4526(98)01359-3
http://dx.doi.org/10.1103/PhysRevB.76.020101
http://dx.doi.org/10.1103/PhysRevLett.25.222
http://dx.doi.org/10.1103/PhysRevLett.25.222
http://dx.doi.org/10.1051/jphyslet:019820043017062500
http://dx.doi.org/10.1051/jphyslet:019820043017062500
http://dx.doi.org/10.1103/PhysRevB.32.6447
http://dx.doi.org/10.1103/PhysRevB.32.6447
http://dx.doi.org/10.1103/PhysRevLett.57.2391
http://dx.doi.org/10.1103/PhysRevLett.57.2391

