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We use symmetry analysis and first-principles calculations to show that the linear magnetoelectric

effect can originate from the response of orbital magnetic moments to the polar distortions induced by an

applied electric field. Using LiFePO4 as a model compound we show that spin-orbit coupling partially lifts

the quenching of the 3d orbitals and causes small orbital magnetic moments (�ðLÞ � 0:3�B) parallel to

the spins of the Fe2þ ions. An applied electric field E modifies the size of these orbital magnetic moments

inducing a net magnetization linear in E.
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The last decade has seen increasing interest in the study
of coupling between electric polarization and intrinsic
magnetic moments in materials [1]. Such magnetoelectric
coupling manifests in numerous macroscopic phenomena
such as type-II multiferroism [2] where the onset of mag-
netic order induces a spontaneous polarization, and
linear magnetoelectricity, where an applied electric field
E (magnetic field,H) induces a magnetizationMj ¼ �ijEi

(polarization, Pi ¼ �ijHj). These two phenomena are

believed to share closely related microscopic mechanisms.
First-principles computations have been particularly

informative in resolving quantitatively the microscopic
contributions to the magnetoelectric response [3–5]. The
first study [3] extracted the ‘‘ionic spin’’ contribution to
�, by calculating the change in spin canting caused by
freezing in an E-induced polar distortion of the ions [6]
without additionally explicitly coupling E to the electrons.
Subsequently, the methodology to calculate the ‘‘electronic
spin’’ component was implemented through calculating
the electric polarization induced by an applied Zeeman
H field coupled only to the spin component of the magne-
tization [4]. Here, the electronic spin response is obtained
by ‘‘clamping’’ the ions during the calculation; relaxing the
ionic positions in response to the H field yields the sum of
the ionic and electronic spin components. (Note that, if the
lattice constant is also allowed to relax—which was not
done in Ref. [4]—an additional strain-mediated ionic re-
sponse can be extracted). Interestingly, this study showed
that the ionic and electronic contributions to � can have
similar magnitudes.

These spin-based contributions to � have been shown to
capture much of the experimental response. For the case
when the magnetic field is applied perpendicular to the
spins in a collinear antiferromagnet, the magnetoelectric
coupling, �?, is relativistic in origin, resulting, e.g., from
the E dependence of the antisymmetric Dzyaloshinskii-
Moriya exchange [5,7]. The calculated zero Kelvin polar-
izations are consistent with experimental values [3], and

the temperature evolution of �? follows that of the anti-
ferromagnetic order parameter [7]. The behavior of �k—
with the magnetic field applied parallel to the spins—is
more complicated. Here, the Heisenberg exchange inter-
actions between spins induce an electric polarization at
finite temperature which is approximately an order of
magnitude larger than that of relativistic origin responsible
for �? [5]. Responses calculated within this Heisenberg
exchange model [5] agree closely with experiment in the
region close to TN [Fig. 1(a)] [8]. One experimental feature
is lacking, however: while the Heisenberg exchange pre-
dicts �k ! 0 for T ! 0 K, consistent with the vanishing

parallel spin susceptibility at zero Kelvin, many magneto-
electrics with collinear antiferomagnetism have nonzero
�k at zero Kelvin, and instead follow the temperature

dependence sketched in Fig. 1(a) (solid line). An obvious

(b)(a)

FIG. 1 (color online). (a) Qualitative sketches of the tempera-
ture dependence of �k in collinear antiferromagnetic magneto-

electrics such as LiFePO4 (solid line) or Cr2O3 (analogous but
with negative zero temperature value) and that calculated within
a spin-exchange striction mechanism (dashed line). (b) The
orthorhombic unit cell of LiFePO4 contains four Fe

2þ magnetic
cations which are coordinated by distorted oxygen octahedra.
The arrows indicate the screw rotation axis parallel to b and c.
The black dot indicates the inversion center.
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candidate for the discrepancy is the neglect of orbital
contributions [9].

While the neglect of orbital magnetism in the above
methods is partially justified by the strong quenching of
3d orbital moments which usually occurs in transition
metal oxides, spin-orbit coupling, Hso ¼ �L � S, can re-
duce the quenching, and allow a non-negligible orbital
magnetization. This scenario is likely in the collinear anti-
ferromagnets LiFePO4 and LiCoPO4. Both of these com-
pounds have a substantially nonzero �k as T ! 0 and an

anomalously large anisotropy of the magnetic g-tensor
[10,11].

Few examples, for limited cases and approximations, of
calculation of the orbital contribution to the magnetoelec-
tric response exist in the literature. An early study of
LiCoPO4 calculated the ‘‘electronic orbital’’ (clamped ion)
contribution analytically by determining the change in the
g-factor with electric field using perturbation theory within
a single-ion Hamiltonian [12]. While giving a nonzero
value for �k at T ¼ 0, this method underestimated its

magnitude. Recently first-principles finite-electric-field
methods were used to calculate the electronic orbital con-
tributions to the trace of the magnetoelectric tensor—the
Chern-Simons term—for Cr2O3 and BiFeO3 [13,14]. This
contribution was shown to be negligible with respect to the
spin contribution in both cases. We emphasize that here we
discuss specifically the linear magnetoelectric effect in
insulating systems. In metallic systems such as Fe films
[15] it has been shown that magnetic anisotropy, and thus
orbital moments, may depend significantly on an electric
field coupled only to electrons and that this dependency
can lead to nonlinear magnetoelectric effects such as
the electric field induced flop of the magnetic easy axis
in Fe-Au-Fe heterosystems. In this Letter we explore the
remaining ‘‘ionic orbital’’ contribution to the magneto-
electric response by calculating the dependence of the
local, on-site orbital magnetic moments on polar lattice
distortions using density functional theory [16]. Using
LiFePO4 as a model compound, we show that this ionic
orbital contribution to � is unexpectedly large and can
explain the anomalous low-temperature behavior observed
in certain components of � that were previously not
understood.

LiFePO4 is orthorhombic (Pnma) and its unit cell
[Fig. 1(b)] contains four magnetic sublattices occupied
by Fe2þ (S ¼ 2) ions. Each magnetic ion is surrounded
by strongly distorted polar oxygen octahedra with local Cs

symmetry. At temperatures below TN � 50 K the Fe2þ
magnetic moments order in the antiferromagnetic collinear
structure with order parameterG ¼ m1 �m2 þm3 �m4

where mi is the magnetization of the ith sublattice. The
spin orientation in the antiferromagnetic state remains
slightly controversial. Early elastic neutron scattering and
x-ray diffraction data suggested that the magnetic moments
are oriented along the b direction [17,18]. However, recent

neutron scattering measurements [19] suggest a magnetic
structure in which G is slightly rotated from b. In this
Letter, we study only those components allowed with
G k b; Ga � 0 or Gc � 0 would give rise to additional
nonzero components of the magnetoelectric tensor (see the
Supplemental Material [20]) that have not yet been re-
ported. The magnetic space group of this antiferromagnetic
state is Pnma0 (magnetic point group mmm0) [17,21].
The onset of the antiferromagnetic order breaks inver-

sion symmetry and allows for linear magnetoelectric cou-
plings in the free energy

�k ¼ �kGbEaHb and �? ¼ �?GbEbHa; (1)

where �i ¼ �i=G
b and the subscript denotes a magnetic

field longitudinal or transverse to the collinear magnetic
moments.
�k follows the typical form discussed previously and

sketched in Fig. 1(a): Decreasing the temperature from TN ,
�k rapidly increases and reaches a maximum at Tmax �
45 K. Below Tmax, �k decreases until 20 K at which it

becomes almost temperature independent with a value of
�2 ps=m [22], not approaching zero as T ! 0 K. �? has
the simpler temperature dependence mentioned earlier,
increasing with decreasing temperature below TN to reach
a roughly constant value below 25 K (4 ps=m) [23].
We focus on the microscopic couplings which can

induce �k. Phenomenologically, exchange-striction cou-

plings between electric polarization and spins are allowed
by symmetry and give rise to the term Pa / ðm1 �m3 �
m2 �m4Þ (Table I). This coupling results in a temperature
behavior of �k similar to that discussed previously for

Cr2O3 [5] as shown in Fig. 1(a). We note that the local
symmetry Cs of the crystal field around each Fe2þ ion has
only one-dimensional irreducible representations giving
nondegenerate d orbitals. When the orbital moments are
fully quenched the magnetic moment at the ith site is
proportional to the spin mi ¼ 2�BSi. Since at T ¼ 0 the
spins in a uniaxial antiferromagnet are not modified byHk
weaker than the magnetic field necessary to flop the spins.

TABLE I. Transformation of the four magnetic sublattices
(second to fifth column) under the three generators of the space
group (modulo a primitive translation) of LiFePO4: inversion I,
twofold screw rotations around the c axis 2c, and b axis 2b.
Columns six to eight show the transformation of three compo-
nents of �i. Here the subscripts refer to the change of magnetic
sublattice, e.g., 2cð�cb

3 Þ ¼ ��cb
2cð3Þ ¼ ��cb

4 . The last three col-

umns show the transformations of E.

1 2 3 4 �ab
i �bb

i �cb
i Ea Eb Ec

I 4 3 2 1 �ab
IðiÞ �bb

IðiÞ �cb
IðiÞ �Ea �Eb �Ec

2c 2 1 4 3 �ab
2cðiÞ �bb

2cðiÞ ��cb
2cðiÞ �Ea �Eb Ec

2b 4 3 2 1 ��ab
2bðiÞ �bb

2bðiÞ ��cb
2bðiÞ �Ea Eb �Ec
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The electric polarization generated at T ¼ 0 by these
couplings in response to Hk is zero.

Next we analyze the orbital contribution to �k. We first

discuss the orientation and size of orbital moments in zero
applied field. From an atomistic perspective, when Hso ¼
�L � S is considered the orbital moments are partially
unquenched and the magnetic moment at site i is

m�
i ¼ �Bð2S�i þ L�

i Þ ¼ �Bg
��
i S�i ; (2)

where Li and g
��
i are, respectively, the orbital momentum

operator and the gyromagnetic tensor at site i,�, � ¼ a, b,
c, and summation over repeated indexes is implied. For an
ion with a nondegenerate ground state, first-order correc-

tions in � lead to g�� ¼ ð2� ����
i Þ where ���

i ¼
P

n
hc 0jL�jc nihc njL�jc 0i

�n��0
. Here c 0 is the ground state wave

function and �n and c n are, respectively, the energy and
the wave function of the nth excited state of the Fe2þ ion
at site i. Since the magnetic moments are parallel to b

we consider the components ��b
i . The transformations of

these components under the generators of the crystallo-
graphic space group (modulo primitive translations) [24]
are listed in Table I, where we see that�ab

i ¼ �cb
i ¼ 0 and

�bb
i � �bb at every magnetic sublattice (see the

Supplemental Material [20]).
The mean values of the orbital parts of the magnetic

moments induced by the antiferromagnetic ordering are
�b

ðLÞi ¼ ���bb
i hSbi i where, for d6 ions, � < 0; therefore,

the orbital moment is parallel to the spins.
Next we consider the case E � 0. Electric-field-induced

polar lattice distortions modify the crystal field around
each Fe2þ ion and the energies �nðEÞ. Expanding ���

i to
first order in E one obtains ��;�

i ðEÞ ¼ ��;�
i ð0Þ þ

E�@E���;�
i , where

@E��
��
i ¼ �X

n

hc 0jL�jc nihc njL�jc 0i
ð��nÞ2

@ð��nÞ
@E� þ �

��
�

(3)

and ��n ¼ �nðEÞ � �0ðEÞ. ���
� are the remaining terms

containing derivatives of wave functions with respect to

E�. The transformations of the derivatives @E��
�b
i under

the space group of LiFePO4 can be obtained from those

of �
�b
i and E (see the Supplemental Material [20]) in

Table I. From these transformations we obtain @Ea�bb
1 ¼

@Ea�bb
3 ¼ �@Ea�bb

2 ¼ �@Ea�bb
4 � @Ea�bb. Therefore,

the response of the average orbital-induced magnetic mo-
ment to an electric field along a gives rise to a net magne-
tization along b

�b
ðLÞ ¼ �B@Ea�bbðhSb1i � hSb2i þ hSb3i � hSb4iÞEa (4)

that at T ¼ 0 gives �b
ðLÞ ¼ 4�BS@Ea�bbEa.

To calculate the strength of the linear magnetoelectric
coupling arising from this mechanism, we perform
first-principles calculations using the Vienna ab initio
simulation package (VASP) [25]. We use a plane-wave
basis set for the expansion of the electronic valence
wave function and projector augmented wave [26] potentials
for the treatment of core electrons. The exchange-correlation
potential is described within the local-spin-density ap-
proximation plus a rotationally invariant Hubbard-U
(LSDAþU) with a U value of 5 eV, and J values
between 0 and 1 eV. Calculations are performed keeping
lattice parameters fixed at the experimental unit cell

volume of 291 �A3 [18]. Therefore, we do not consider
strain-mediated contributions. We first relax the structure
in the absence of spin-orbit coupling and then we include
spin-orbit coupling to calculate the orbital magnetic
moment. We obtain an orbital moment �ðLÞ ¼ 0:306�B

parallel to the spins, with J ¼ 1 eV. Note that the magni-
tude of the magnetic moment depends on J and on the
PAW sphere radius as discussed in the Supplemental
Material [20].
To calculate the ionic orbital response—the change in

orbital magnetic moments when the ions are displaced by
E—we adapt the framework introduced in Ref. [3] for the
ionic spin response. As in Ref. [3], we shift the equilibrium
positions ri of the ions by �r

�
i ¼ E�

P
�j�

�1
�i;�jZ

�
j;�� where

��1
�i;�j is the inverse of the force constant matrix after the

acoustic modes are traced out and Z�
j;�� are the Born

effective charges, both calculated in the absence of spin-
orbit coupling. Since we aim to separate the orbital from
the spin contribution, we constrain the orientation (but not
the magnitude) of the spins to lie along the b direction,
which we call the ‘‘clamped spin’’ approximation. After
making the�r

�
i distortions from the equilibrium zero-field

positions, we relax the electronic density with spin-
orbit coupling included and calculate the resulting orbital
magnetic moments.
Figure 2(a) shows the evolution of the calculated net

orbital magnetic moment �ðLÞ ¼ P
i¼1;4�ðLÞ;i of one unit

cell of LiFePO4 for an electric field applied along a with
J ¼ 1 eV (blue) and J ¼ 0 eV (red). (Note that, while the
electric field is applied perpendicular to the spins, this
corresponds to the parallel component of �, since the
magnetoelectric response is off diagonal). We find that at
nonzero electric field the orbital moments remain parallel
to the spins, and consistent with Eq. (4) their change in size
is opposite for odd and even magnetic sublattices giving a
net magnetization. The linear fits of the Ea responses of the
orbital magnetization at J ¼ 1 eV (blue line) and J ¼
0 eV (red line) give �k ¼ 2:3 ps=m and �k ¼ 9:3 ps=m,

respectively. The �k value for J ¼ 1 eV is close to the

experimental value of �k � 2 ps=m at T ¼ 0 K [21,23].

This J value is consistent with Ref. [27] which showed
that J > 0:6 eV is needed to obtain the correct magnetic
easy axis.
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To summarize this section, we find that the calculated
zero Kelvin ionic orbital contribution to �k has a value

which is consistent with the measured value of �k. We

suggest, therefore, that the previous discrepancy between
the measured zero Kelvin magnetoelectric response and
the calculated spin-only response can be explained by this
contribution. At nonzero temperatures, contributions to �k
that are inactive in the absence of thermal fluctuations have
to be taken into account. These terms comprise the electric
field dependence of single-ion anisotropy, which has the
same nature as the orbital magnetic moment, as well as the
Heisenberg interactions mentioned earlier.

Finally, we investigate the ionic orbital contribution to
�? by calculating the effect of an electric field applied
along b. While the spin-only contribution was not incon-
sistent with experiment in this case, contributions to �?
from the electric field dependence of �ðLÞi have not been

previously investigated and might also play a role. First we
use symmetry arguments to find the constraints on @Eb���

i .
From Table I we find @Eb�ab

1 ¼ @Eb�ab
3 ¼ �@Eb�ab

2 ¼
�@Eb�ab

4 � @Eb�ab, @Eb�cb
1 ¼ @Eb�cb

2 ¼ �@Eb�cb
3 ¼

�@Eb�cb
4 � @Eb�cb and @Eb�bb

i ¼ 0. We note that the

transformation properties of @Eb�ab
i are identical to those

of @Ea�bb
i . This allows for a linear dependence of the

orbital magnetization along a when the electric field is
applied along b:�a ¼ 4�BE

b@Eb�abjhSbij where jhSbij is
the absolute value of the average spin component along b.
In contrast, the spin ordering of LiFePO4 combined with
the transformation properties of @Eb�cb

i yields opposite
changes in the orbital moment along c under the applied

Eb field for sublattices 1, 4 compared with 2, 3 and zero net
moment in this direction. To obtain the size of the ionic
orbital contribution to �? we perform ab initio calcula-
tions using the same method discussed for �k but with E
applied along b. The resulting calculated values of net
orbital moment are shown in Fig. 2(b) as a function of Eb.
Here blue and red points show the results for, respectively,
J ¼ 1 eV and J ¼ 0 eV. Even when the spins are con-
strained parallel to the b axis, the applied Eb induces a
canting of the orbital magnetic moments from the b direc-
tion. In agreement with the constraints found for @Eb�ab

i

the resulting canting is uniform along the a axis for all
magnetic sublattices giving rise to a net magnetization
linear in Eb. Furthermore, as predicted using the transfor-
mations of @Eb�cb

i for finite Eb we observe a tiny staggered
canting of the orbital moment along c which gives rise to
zero net magnetization. The solid lines in Fig. 2(b) are linear
interpolations of the calculated values and give linear mag-
netoelectric responses of 1:9 ps=m and 9:7 ps=m for J ¼
1 eV and J ¼ 0, respectively. To these values, which contain
only the ionic orbital magnetoelectric effect, one should add
the spin-only contribution to �?, which in contrast to the
case of �k does not vanish at T ¼ 0. These include the

rotation of easy axis anisotropy, which shares the same
origin as the canting of the orbital magnetic moment, as
well as the Dzyaloshinskii-Moriya interaction. Using the
approach described in Ref. [4], which includes these con-
tributions but not the orbital part, we obtain�? ¼ 2:6 ps=m
with sign opposite to the orbital one for J ¼ 1 eV.
Importantly, these considerations can also be used to de-
scribe the resonant excitation of waves of oscillating mag-
netization M k a with an oscillating electric field of a light
wave E k b, resulting in the so-called ‘‘electromagnon’’
peaks in optical absorption [28]. Thus the coupling between
the orbital magnetic moment and the electric field gives rise
to both static and dynamic magnetoelectric effects.
In summary, we have shown that a linear magnetoelec-

tric effect can arise from the dependence of orbital mag-
netic moments on the polar distortions induced by an
applied electric field, the so-called ‘‘ionic orbital’’ contri-
bution to the magnetoelectric response. We presented a
symmetry analysis to determine the components of ��� for

which this effect exists, and a methodology with which to
calculate ab initio those components at T ¼ 0. We applied
the methodology to LiFePO4 and resolved the previous
discrepancy between calculations of the spin-only contri-
butions and experiment for �k. Our results show that the

orbital contributions to the magnetoelectric response can
be comparable in size to the spin contributions of either
relativistic or exchange-striction origin in 3d transition
metal compounds. As suggested by Eq. (4), the tempera-
ture dependence of the magnetoelectric effect caused
by orbital magnetism coincides with that of the order
parameter which, added to the temperature dependence
of the response originating from striction, gives qualitative

(a)

(b)

(c)

(d)

FIG. 2 (color online). Calculated electric-field dependence of
the net orbital magnetic moment per unit cell. (a) E k a results
in an orbital magnetization along b (�k). (b) E k b produces a

net orbital magnetic moment along a (�?). Blue dots and
red squares are calculated with J ¼ 1 eV and J ¼ 0 eV, respec-
tively; the lines are linear fits to the calculated values. The
cartoons on the right panels show the size and orientation of the
orbital magnetic moments (gray arrows) of Fe2þ (brown spheres
with attached arrows) when the electric field is applied along a
(c) and b (d).
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agreement for various collinear antiferromagnets such as
Cr2O3 [29], LiCoPO4 [30], and TbPO4 [31].

Furthermore, the strength of such coupling depends on
the spin-orbit interaction, energy gaps between ground and
excited states for which hc 0jL�jc ni � 0, and the depen-
dence of these states on polar distortions. This suggests that
large magnetoelectric effects from orbital moments corre-
late with the enhanced anisotropic g-tensor and the anisot-
ropy of the magnetic susceptibility in the paramagnetic
state. In particular, a large orbital magnetoelectric response
might be found in compounds with small electronic gap,
containing magnetic ions with large spin-orbit coupling
and with low symmetry polar oxygen coordination.
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under the FP7, Grant No. 291151. E. B. thanks FRS-FNRS
Belgium for support.
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