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We describe investigations of the largely unexplored field of mesoscopic type-I superconductors.

Micromagnetometry and 3D Ginzburg-Landau simulations of our single crystal �-tin samples in this

regime reveal size- and temperature-dependent supercritical fields whose behavior is radically different

from the bulk critical fieldHB
c . We find that complete suppression of the intermediate state in medium-size

samples can result in a surprising reduction of the critical field significantly below HB
c . We also reveal an

evolution of the superconducting-to-normal phase transition from the expected irreversible first order at

low temperatures through the previously unobserved reversible first-order to a second-order transition

close to Tc, where the critical field can be many times larger than HB
c . Finally, we have identified striking

correlations between the mesoscopic Hc3 for nucleation of surface superconductivity and the thermody-

namic Hc near Tc. All these observations are entirely unexpected in the conventional type-I picture.

DOI: 10.1103/PhysRevLett.109.197003 PACS numbers: 74.78.Na, 74.25.Bt, 74.25.Ha, 81.16.�c

The textbook description of a bulk type-I superconduc-
tor is one that exhibits perfect diamagnetism in fields up to
the thermodynamic critical field HB

c when it undergoes a
first-order transition to the normal state. In practice, real
samples exhibit a very much richer range of phenomena,
including intermediate states, surface superconductivity,
supercooling, and superheating, and these were the subject
of intense investigation in the 1950s, 1960s, and 1970s.
Recent advances in sample fabrication, measurement, and
imaging technology are allowing these problems to be
revisited, and, in several cases, e.g., the competition be-
tween laminar and tubular intermediate state phases in
macroscopic samples [1,2], our understanding is being
radically revised. There has also been a resurgence of
interest in nanoscale type-I samples whose radius R is
much smaller than the penetration depth �ðTÞ, in which
huge enhancements of the critical field over the bulk value
[� ð�=RÞHB

c ] [3] have been reported. In stark contrast, the
richest intermediate regime of mesoscopic type-I super-
conductivity, when sample dimensions are comparable to
the superconducting coherence length �ðTÞ, remains
largely unexplored. In this Letter, we focus explicitly on
this regime.

Mesoscopic superconductivity has been an extremely
active area of research in recent years, but these studies
have mostly focused on type-II superconductors or pat-
terned disordered type-I superconducting films, which are
often effectively in the type-II limit. Work on single
crystal mesoscopic type-I samples has been largely re-
stricted to resistance measurements of whiskers [4,5],
where added voltage contacts are known to strongly
perturb results [6] and distinguishing between Meissner
and intermediate states is challenging. In order to bridge
the bulk [R � �ðTÞ] and nanoscale [R � �ðTÞ] regimes,

we have exploited recent breakthroughs in electrocrystal-
lization on B-doped diamond electrodes [7], which allow
the controllable growth of single crystal �-Sn rods with
(sub)micrometer dimensions. Transfer to a Hall array
micromagnetometer enables precise, contactless measure-
ments of the magnetic response of individual Sn rods as
a function of temperature and magnetic field. Figure 1(a)
shows a scanning electron micrograph of a typical
�-tin microcrystal on a B-doped diamond electrode.
Approximately square cuboid-shaped rods were selected
for investigation and sample dimensions accurately
estimated from atomic force microscope images [cf.,
Fig. 1(b)]. Sample widths and lengths spanned the ranges
w � 0:7–2:5 �m and l � 0:9–6:0 �m, respectively. The
Ginzburg-Landau (GL) parameter of our �-tin samples is
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FIG. 1 (color online). (a) Scanning electron micrograph of a
typical Sn rod deposited on a B-doped diamond electrode. (b) 3D
atomic force microscope image of a Sn crystal mounted on a
Hall probe. (c) Optical micrograph of a Hall probe array.
(d) Sketch of the micromagnetometry measurement setup.
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estimated to be [8] �ðTcÞ ffi 0:05–0:15 � 1=
ffiffiffi

2
p

, making
this a model system for investigating the properties
of strongly type-I superconductors. The critical tempera-
ture of all our rods is very close to the bulk value of
Tc ¼ 3:72 K, and the temperature-dependent thermody-
namic critical field is well described by HB

c ðTÞ ¼
306½1� ðT=TcÞ2� Oe. The low temperature magnetization
of individual samples was measured by placing them
directly on top of the 2 �m� 2 �m active elements
of a GaAs/AlGaAs heterostructure Hall probe array
[Fig. 1(c)] [9]. The Hall probes were driven with a
20 �A 314 Hz ac current and the Hall voltage detected
by using two digital lock-in amplifiers [Fig. 1(d)] allow-
ing the numerical subtraction of an active and an empty
(reference) Hall element to obtain the local magnetization
of the sample. Hall arrays were mounted on the end of a
temperature-controlled sample holder that was coupled by
exchange gas to a pumped liquid helium bath. An external
magnetic field was applied perpendicular to the plane of
the Hall array from a 1 T superconducting solenoid.

To verify the experimental findings, we employ 3D
numerical GL calculations in a simulation region several
times larger than the sample in all directions. To obtain the
correct temperature dependence of HB

c / ½1� ðT=TcÞ2�,
empirical modifications proposed by Ginzburg were used
[10], so that the two GL equations read

ð�i ~r� ~AÞ2� ¼ 1

ð1� t2Þ2 ð1� t4 � j�j2Þ� (1)

� �ð0Þ2
ð1þ t2Þ2

~r� ~r� ~A ¼ Imð�� ~r�Þ � j�j2 ~A; (2)

where all lengths are scaled to �ð0Þ, the vector potential A
is expressed in units of �0=2��ð0Þ, the order parameter
is scaled to its value at zero temperature and applied
field, and t ¼ T=Tc. As a consequence of these modifica-
tions, the GL parameter becomes temperature dependent;
�ðtÞ ¼ �ð0Þ=ð1þ t2Þ. The simulations are performed on a
dense rectangular grid, with typically 5 grid points per
�ðTÞ, with assumed parameters �ð0Þ ¼ 174:5 nm and
�ð0Þ ¼ 0:25, and the exact experimental HB

c ð0Þ¼306Oe,
Tc ¼ 3:72 K, and sample dimensions. Neumann boundary

conditions of the form ð�i ~r� ~AÞ�jn ¼ 0 are used at all
surfaces [11].

Figure 2(a) shows magnetization data for three rods
whose sizes span the full range investigated. The inter-
mediate state was suppressed in all samples due to quan-
tum confinement; the rods are considerably smaller than

the equilibrium domain width a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�d=fð~hÞ
q

for a lam-

inar intermediate state structure, a periodic arrangement
of straight superconducting, and normal domains. Here
� ¼ ð�� �Þ is the wall energy parameter, d is the sample

thickness, and fð~hÞ ¼ f1ð~hÞ þ f2ð~hÞ< 0:023 [12] is a
function of reduced field and accounts for magnetostatic

energy [f1ð~hÞ] and the increased energy due to broad-
ening of the normal domains at the sample surface

[f2ð~hÞ]. For a typical sample thickness of � 1 �m we
find a > 2 �m, and laminar domains are unstable for all
investigated rod sizes. The data in Fig. 2(a) also show
clear superheating of the superconducting state for sweeps
to a higher field and supercooling of the normal state for
sweeps to a lower field. The respective reduced super-
critical fields are plotted against inverse rod diameter in
Figs. 2(b) and 2(c) for many different samples at several
reduced temperatures. Superheating in mesoscopic type-I
samples has important applications; e.g., superheated
superconducting granules are being developed as efficient
high energy particle detectors [13,14]. Hsh can be esti-
mated theoretically as the highest field at which GL
theory has a metastable solution under infinitesimal per-
turbations [15]. Analytic calculations of the superheating
field in the limit of � � 1 yield the approximate bulk

result HB
sh ffi 2�1=4��1=2HB

c [16]. Once Hsh is reached

at any point on the surface, a normal region begins
to nucleate and the Meissner state is destroyed.

FIG. 2 (color online). (a) Local magnetization data at t ¼
T=Tc ¼ 0:90 for three different-sized Sn rods. The thermody-
namic critical field HB

c ðt ¼ 0:90Þ; HshðtÞ (solid arrows) and
HscðtÞ (dashed arrows) are indicated. (b) The reduced superheat-
ing field Hsh=H

B
c and (c) the reduced supercooling field Hsc=H

B
c ,

as a function of the inverse width w�1 for different temperatures.
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Consequently, a shape-dependent demagnetization factor
D has to be accounted for when discussing the results of
Fig. 2(b), and the measured superheating field becomes
Hsh ¼ ð1�DÞHB

sh. With the field applied perpendicular

to one of the long faces, D depends only weakly on the
rod length and has been estimated by using a formula due
to Chen, Pards, and Sanches [17] for rectangular prisms.
Substitution of the value �ð0Þ ¼ 0:25 used in GL simu-
lations into the � � 1 limiting result given above yields
HB

sh=H
B
c ¼ 1:961 for t ¼ 0:6 (approximately in the bulk

regime for all rods). Correcting this by the demagnetiza-
tion factor (D ¼ 0:32–0:35 [17]) in order to make a direct
comparison with experiments, we obtain HB

sh=H
B
c ¼

1:27–1:33, which is in reasonable agreement with the
measured values in Fig. 2(b) for t < 0:96. In practice,
the superheating fields plotted in Fig. 2(b) show lower and
quite widely scattered values with no clear systematic
dependence on rod width, and we conclude that nuclea-
tion of the normal state occurs at microscopic surface
defects that are not detected by our characterization
methods.

In contrast, we find that the supercooling fields (labeled
Hsc) plotted in Fig. 2(c) are strongly enhanced in the
narrowest rods and exhibit an approximately linear depen-
dence on 1=w at high temperatures. It is well established
that the normal state of type-I samples can be supercooled
belowHB

c toHc2, at which point barriers to bulk nucleation
vanish. Supercooling can, however, be restricted to the
nucleation field for surface superconductivity if Hc3 <
HB

c , as we show to be the case here. For a semi-infinite
normal-superconducting planar interface, this nucleation

field is calculated to be Hc3 � 1:695
ffiffiffi

2
p

�HB
c [18]. It is

known, however, that Hc3 strongly depends on the shape
of the sample surface and is, in general, larger than this
value. Schweigert and Peeters [19] have calculated Hc3 for
wedge-shaped samples and, for 90	 corners appropriate for
our Sn rods, found H90	

c3 � 1:97
ffiffiffi

2
p

�HB
c . Since this expres-

sion is independent of the sample width, it is clearly
inconsistent with our results for supercooling fields in
Fig. 2(c). In what follows, we argue that differences in
Hsc for crystals of different widths are a purely mesoscopic
(i.e., size-dependent) effect as the width of the sample is
decreased towards �ðTÞ and the confinement of the super-
conducting condensate starts to play a pronounced role.
This is better illustrated in Fig. 3(a), which shows reduced
critical field data as a function of temperature for a subset
of three crystals (the smallest, the largest, and one of
intermediate size). The coherence length of the condensate
is increasing with temperature, and the influence of quan-
tum confinement becomes more prominent at higher tem-
peratures, as reflected in a rapid divergence of the reduced
supercritical fields near Tc.

The results of our theoretical simulations are shown in
Fig. 3(b) and correctly reproduce all the experimentally
measured features. These include the ordering of the

curves for rods of different sizes, the crossover and con-
vergence points, and the fall in Hsh before its rise at high
temperatures in the two larger crystals. Such behavior of
Hsh has been investigated numerically by Landau and
Rinderer as a function of the width of superconducting
slabs with a similar value of � [20]. Hsh=H

B
c was initially

found to fall as the width decreased below 20�ðTÞ, then
pass through a minimum at wc � 4�ðtÞ, and rise again

for still narrower slabs. Using �ðtÞ ¼ 43:65 nm=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� t4
p

from our GL model, we estimate that our intermediate rod
will reach w ¼ wc for t ¼ 0:994, which is significantly
higher than in our data (t ¼ 0:979) and the GL simulation
(t ¼ 0:973) due to the finite (and strong) longitudinal
confinement in our samples at high temperatures.
Remarkably, we also see that the superheating field of
the largest rod actually falls below the bulk critical field
for a narrow range of temperatures around t ¼ 0:98 in both
experimental and theoretical plots. This has its origin in the
suppression of the intermediate state in these mesoscopic
rods, which prevents the system from reducing enhanced
surface fields due to finite demagnetization factors. As a
consequence, superconductivity is actually quenched at
lower fields in these mesoscopic samples than it would
be in bulk samples. While we believe that our isotropic GL
model captures the essential physics of the problem, the
properties of Sn are known to be quite strongly anisotropic,
and any discrepancies between theory and experiment can
probably be attributed to this. To obtain further insights
into the physics at play, we analyze our results in terms of
available analytic theories. The shallow downward trend of
Hsc=H

B
c at lower temperatures in Fig. 3 falls outside the

mesoscopic regime when our crystals are significantly
larger than the superconducting length scales and agrees
well with the prediction for wedges with 90	 corners given

FIG. 3 (color online). (a) Comparison of the experimental
supercooling (solid symbols) and superheating (open symbols)
fields as a function of temperature and (b) the results of 3D GL
calculations for a subset of three crystals.
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above, ~h ¼ H90	
c3 =HB

c [19], after inclusion of the tempera-

ture dependence of the GL parameter [cf., lower solid line
in Fig. 4]. In general, the nucleation of the superconducting
state in large cuboid rods w � �ðTÞ occurs at the value of
Hc3 for which the maximum of the superconducting order
parameter lies approximately �ðTÞ inside the sample sur-
face. Ginzburg and Landau have analyzed the related
problem of a thin slab [21] and found that, above the
temperature at which the critical width w0 ¼ 1:84�ðTÞ is
reached, the two opposing surfaces couple and supercon-
ductivity nucleates in the center of the slab rather than just
below the surface. Assuming that �ð0Þ ¼ 230 nm in the
direction of interest [22], a predicted rise in Hsc=H

B
c of our

smallest rod for T > 0:75Tc is in excellent agreement with
the behavior observed in Figs. 3(a) and 3(b). For w � �ðtÞ
Ginzburg and Landau showed that the second-order tran-

sition just below Tc was described by HcðtÞ=HB
c ðtÞ �

ffiffiffiffiffiffi

24
p

�ðtÞ=w, and subsequent numerical work by Fink [23]
revealed that the same expression accurately describes
Hc3ðtÞ in the very much broader temperature region w<
1:6�ðtÞ. Hence, remarkably, we anticipate that the super-
cooling field at low temperatures and the second-order
transition field near Tc should be described by a single
common curve in our samples. Silin [24] has used GL
theory to investigate the critical fields of mesoscopic
type-I superconducting cylinders and spheres and demon-
strated that the superconducting-normal transition be-

comes second order when r0 ¼ R=�ðtÞ< ffiffiffi

3
p

(cylinders)

and r0<
ffiffiffiffiffiffi

21
p

=2 (spheres), where R is the radius of the

sample. In this limit Hc=H
B
c � ffiffiffi

8
p

=r0 and Hc=H
B
c �

2
ffiffiffi

5
p

=r0 for cylinders and spheres, respectively. The re-
duced supercooling fields plotted in Fig. 2(a) appear to
exhibit this inverse width (w ¼ 2R) relationship at high
temperatures. If we analyze the t ¼ 0:97 data in this way,
we extract a penetration depth that is about a factor of 2 too
large for the cylinder model [�ð0Þeff ¼ 78
 10 nm] and is

almost exactly correct for the sphere model [�ð0Þeff ¼
49
 5 nm], even though most of the data points are not
strictly in the limit of Silin’s theory. We argue that the
sphere model is actually more appropriate for our samples,
since (i) the smallest rods investigated are almost cubic in
shape and (ii) our samples exhibit strong quantum confine-
ment along the length of the rods. Figure 4 shows the raw
supercritical fields in the high temperature part of the phase
diagram for the smallest and largest rods, revealing that
Hsc for the biggest rod is well described by H90	

c3 ðtÞ for
t < 0:95. We see that Hsh and Hsc significantly exceed HB

c

close to Tc and eventually converge on each other at the
temperature where the transition becomes reversible.
Careful examination of the MðHÞ loops for the smallest
rod shown in Fig. 5 indicates that the system initially enters
a first-order reversible regime with a finite magnetization
jump at Hc for t > 0:964 before becoming continuous
second-order for t > 0:974, rather close to the predicted
onset of the second-order regime calculated by Silin
(t ¼ 0:979 for our system). The onset of a continuous
transition signals the start of the extremely confined nano-
scale regime, where screening of the magnetic field is
incomplete and the concept of type-I superconductivity
no longer applies. As anticipated above, we find that the

r0 <
ffiffiffiffiffiffi

21
p

=2 limit theory for spherical mesostructures al-
most perfectly describes the supercooling branch of the
data for the smallest rod from t < 0:8 where the transition
is highly irreversible all the way up to Tc, where the
transition is continuous and reversible (cf., Fig. 4). This,
and the linear behavior of Fig. 2(c) at high temperatures,
conclusively demonstrates for the first time the link be-
tween the supercooling field and Hc3ðtÞ at low tempera-
tures and HcðtÞ in the reversible regime near Tc.
In conclusion, we present systematic measurements of

supercritical fields in individual 3D mesoscopic type-I
superconductors. We show that their supercooling and su-
perheating fields can greatly exceed the bulk critical field
HB

c in sufficiently small samples or at sufficiently high
temperatures when the sample size becomes comparable
to the temperature-dependent coherence length and strong
quantum confinement sets in. Paradoxically, the superheat-
ing field for intermediate-sized rods is unexpectedly found

FIG. 4 (color online). Superheating (open symbols) and super-
cooling (solid symbols) fields near Tc for the smallest and largest
Sn crystals, in comparison with analytic formulas.

FIG. 5 (color). MðHÞ loops near Tc for the smallest crystal in
Fig. 4 illustrating the change from an irreversible to a reversible
transition as the temperature is increased.
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to fall substantially below HB
c over a narrow temperature

window due to quantum suppression of the intermediate
state. Magnetization loops for individual rods reveal a
surprisingly broad region where the transition is reversible;
the classical irreversible (type-I) first-order signal-to-noise
transition at low temperatures initially evolves into a hith-
erto unobserved reversible first-order, and then continuous
second-order, transition as the temperature increases. We
conclusively demonstrate that the low temperature super-
cooling field is set byHc3ðtÞ for nucleation of surface super-
conductivity and remarkably reveal that HscðtÞ at low
temperatures and HcðtÞ in the reversible second-order re-
gion nearTc are described by a single common curve. These
are just the initial findings in the field of small type-I super-
conductors, which promises to reveal physics as rich as its
type-II counterpart.
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