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We investigate the effect of edges on the intrinsic d-wave superconducting state in graphene doped

close to the van Hove singularity. While the bulk is in a chiral dx2�y2 þ idxy state, the order parameter at

any edge is enhanced and has dx2�y2 -symmetry, with a decay length strongly increasing with weakening

superconductivity. No graphene edge is pair breaking for the dx2�y2 state, and there are no localized zero-

energy edge states. We find two chiral edge modes which carry a spontaneous, but not quantized,

quasiparticle current related to the zero-energy momentum. Moreover, for realistic values of the Rashba

spin-orbit coupling, a Majorana fermion appears at the edge when tuning a Zeeman field.
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Graphene, a single layer of carbon, has generated
immense interest ever since its experimental discovery [1].
Lately, experimental advances in doping methods [2,3] have
allowed the electron density to approach the van Hove
singularities (VHSs) at 25% hole or electron doping. The
logarithmically diverging density of states at the VHS can
allow nontrivial ordered ground states to emerge due to
strongly enhanced effects of interactions. Very recently,
both perturbative renormalization group [4] and functional
renormalization group calculations [5,6] have shown that a
chiral spin singlet dx2�y2 þ idxy (d1 þ id2) superconducting

state likely emerges from electron-electron interactions in
graphene doped to the vicinity of the VHS. This is in
agreement with earlier studies of strong interactions on the
honeycomb lattice near half filling [7–10].

Rather unique to the honeycomb lattice is the degener-
acy of the two d-wave pairing channels [7,11]. Below
the superconducting transition temperature (Tc), this
degeneracy results in the time-reversal symmetry breaking
d1 þ id2 state [4,7]. However, any imperfections, and most
notably edges, might destroy this degeneracy and generate
a local superconducting state different from that in the
bulk. At the same time, many of the exotic features pro-
posed for a d1 þ id2 superconductor, such as spontaneous
[12,13], or even quantized [14], edge currents and quan-
tized spin- and thermal Hall effects [15,16], are intimately
linked to its edge states. In order to determine the proper-
ties of d1 þ id2 superconducting graphene, it is therefore
imperative to understand the effect of edges on the super-
conducting state.

In this Letter, we establish the edge properties of d1 þ id2
superconducting graphene doped to the vicinity of the VHS.
We show that, while the bulk is in a d1 þ id2 state, any edge
will be in a pure, and enhanced, d1-wave state. Because of a
very long decay length of the edge d1 state, the edges
influence even the properties of macroscopic graphene
samples. We find two well-localized chiral edge modes
which carry a spontaneous, but not quantized, edge current.

Furthermore, we show that, by including a realistic Rashba
spin-orbit coupling, graphene can be tuned, by using a
Zeeman field, to host a Majorana fermion at the edge.
These results establish the exotic properties of the chiral
d1 þ id2 superconducting state in doped graphene, which,
if experimentally realized, will provide an exemplary play-
ground for topological superconductivity. Furthermore,
these results are also very important for any experimental
scheme aimed at detecting the d1 þ id2 state in graphene,
as such a scheme will likely be based on the distinctive
properties of the edge.
We approximate the �-band structure of graphene as

H0 ¼ �t
X

hi;ji;�
cyi�cj� þ�

X

i

cyi�ci�; (1)

where t ¼ 2:5 eV is the nearest-neighbor (NN) hopping
amplitude and ci� is the annihilation operator on site iwith
spin �. The chemical potential is �, and the VHS appears
at� ¼ �t, where the Fermi surface transitions from being
centered around K, K0 to �. We study two different models
for superconducting pairing from repulsive electron-
electron interactions:

H� ¼ X

i;�

��ðiÞðcyi"cyiþa�# � cyi#c
y
iþa�"Þ þ H:c: (2)

In the limit of very strong on-site Coulomb repulsion,
(mean-field) pairing appears on NN bonds such that a� ¼
�� (� ¼ 1, 2, 3) [7], whereas a moderate on-site repulsion
gives rise to pairing on next-nearest-neighbor (NNN)
bonds with a� ¼ �� [5]; see Fig. 1(a). The high electron
density near the VHS efficiently screens long-range
electron-electron interactions, and we also show that our
results are largely independent of the choice of a. In mean-
field theory the order parameter can be calculated from
the condition ��ðiÞ ¼ �Jhci#ciþa�" � ci"ciþa�#i. Here J is

the effective (constant) pairing potential arising from the
electron-electron interactions and residing on NN bonds
for a ¼ � and on NNN bonds for a ¼ �. By using this
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condition for �, the Hamiltonian H ¼ H0 þH� can be
solved self-consistently within the Bogoliubov–de Gennes
formalism [17,18]. The favored bulk solution of ��

belongs to the two-dimensional E2 irreducible representa-
tion of the C6v lattice point group. This representation can
be expressed in the basis âd1 ¼ ð1;� 1

2 ;� 1
2Þ, which has

d1¼dx2�y2 symmetry when H0 is diagonal, and âd2 ¼
ð0;

ffiffi
3

p
2 ;�

ffiffi
3

p
2 Þ, which has d2 ¼ dxy symmetry; see Fig. 1(b).

In the translational invariant bulk, these two solutions have
the same Tc, but below Tc the complex combination
d1 þ id2 has the lowest free energy [4,7]. There is also
an s-wave solution, âs ¼ ð1; 1; 1Þ, but it appears only sub-
dominantly and at very strong pairing.

In order to quantify the edge effects, we study thick
ribbons with both zigzag and armchair edges. We assume
smooth edges and Fourier transform in the direction par-
allel to the edge. Because of computational limitations, we
need J * 0:5t in order to reach bulk conditions inside the
slab. This gives rather large ��, but by studying the J
dependence we can nonetheless draw conclusions for the
experimentally relevant low-J regime.

Superconducting state at the edge.—In the bulk, the
d1 þ id2 state has a free energy �F lower than the d1;2
states, which varies strongly with both doping and pairing
potential; see the inset in Fig. 2(c). However, sample edges
break the translational invariance, and a qualitatively dif-
ferent solution emerges. Figure 2(a) shows how the zigzag
edge completely suppresses the imaginary part of�� while
at the same time enhancing the magnitude. This suppres-
sion leads to a pure d1 solution at the edge, an effect
we quantify in Fig. 2(b) by plotting the d1 character

j
ffiffi
2

p
ffiffi
3

p ½�1 � 1
2 ð�2 þ�3Þ�j2. The edge behavior can be under-

stood by noting that bonds �2 and �3 (�2 and �3) are
equivalent for both armchair and zigzag edges [19], and,
therefore, the d1-wave state is heavily favored at both types
of edges. Since the edge is of the zigzag type for edges with
30� and 90� angles off the x axis and of the armchair type
for 0� and 60� angles, we conclude that any edge should
host d-wave order with nodes angled 45� from the edge
direction. In order to quantify the spatial extent of this edge
effect, we calculate a decay length � by fitting the

d1-character profile to the functional form (Ce�x=�þ0:5)

with C � 0:5. As seen in Fig. 2(c), � varies strongly with
�F but very little with edge type and doping level.
Furthermore, the increase in � for NNN pairing compared
to NN pairing suggests that the edge will be even more
important in models with longer ranged Coulomb repul-
sion. The strongly increasing � with decreasing �F has
far-reaching consequences for graphene. For example,

J ¼ 0:5t and doping at the VHS gives � � 25 �A for NN
pairing. With an expected much weaker superconducting
pairing in real graphene, the edge will modify the proper-
ties of the superconducting state not only in graphene
nanoribbons but also in macroscopically sized graphene
samples. We have verified that both the d1 þ id2 state itself
and edge effects described here are stable in the presence
of random disorder (see Supplemental Material [18]).
Chiral edge states.—Any d1 þ id2 state, even with one

subdominant part, violates both time-reversal and parity
symmetry and has been shown to host two chiral edge
states [12,14,15]. The topological invariant guaranteeing
the existence of these two chiral edge modes also causes
quantized spin- and thermal-Hall responses [15,16].
Figure 3(a) shows the band structure for a zigzag slab.
The self-consistent solution (thick black line) gives two
Dirac cones located at �k0, where bands with same

FIG. 2 (color online). (a) Order parameter profile for the
zigzag edge for NN J ¼ 0:75t at the VHS with real (black lines)
and imaginary (red lines) parts for �1 (thick line), �2 (thin line),
and �3 (dashed line) [the black dashed line is hidden behind the
black solid line since Reð�2Þ 6 Reð�3Þ]. (b) Character of the
order parameter in (a): d1 (thick black line), d2 (thick red line),
and s (thin black line). The dotted line marks the bulk value.
(c) Decay length � of the d1 character as a function of �F for
different doping levels, edges, and superconducting pairing: NN
pairing, zigzag edge, and � ¼ t (black cross), � ¼ 0:8t (red
circle), � ¼ 1:2t (green diamond), or armchair edge and � ¼ t
(blue cross), NNN pairing, zigzag edge, and � ¼ t (black
asterisk), � ¼ 0:8t (red square), � ¼ 1:2t (green upward tri-
angle) [blue, cross symbols are often completely overlaying
black, cross symbols since no notable difference is found be-
tween zigzag and armchair edges]. The inset shows �F as a
function of the pairing potential for NN pairing (black lines) and
NNN pairing (red lines) for � ¼ t (thick line) and � ¼ 1:2t
(thin line). �< t has a �F curve similar to �> t.

FIG. 1 (color online). (a) Graphene with NN bonds ��, NNN
bonds ��, and zigzag and armchair edges indicated. (b) Different
d-wave superconducting order parameters for NN and NNN
pairing with negative (blue) and positive (red) sign.
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velocities reside on the same surface, thus yielding two
copropagating chiral surface states per edge. The band
structure for the constant (nonself-consistent) bulk
d1 þ id2 state also has two Dirac cones (thin black line)
but shifted away from k0. The shift is directly related to the
d1 state at the edge. The d1 state has no surface states on
the zigzag edge, only bulk nodal quasiparticles, where the
nodes for a d1 order parameter with amplitude equal to that
on the edge are located at �k0 (thin red line). The simi-
larity between the d1 þ id2 and d1 edge band structures
thus makes for only modest effects of the edge on the self-
consistent band structure. It also results in the chiral edge
modes being well-localized to the edge, as seen in the local
density of states (LDOS) plot in Fig. 3(b). The constant
edge LDOS is a consequence of the one-dimensional Dirac
spectrum. We note especially that no d-wave supercon-
ducting graphene edge will display a zero-bias conduc-
tance peak due to zero-energy surface states, in contrast to
the cuprate superconductors [13]. Such a peak is present
only when the order parameter for incidence angle � on the
edge has a different sign from when the angle is �� �.
This happens only for the d2 solution on both the zigzag
and armchair edge.

The breaking of time-reversal symmetry gives rise to
spontaneous edge currents carried by the chiral edge
modes [12–14,16]. By combining the charge continuity
equation with the Heisenberg equation for the particle
density [17], we calculate in Fig. 3(c) the quasiparticle
edge current as a function of the bulk order parameter

�ð1; e2�i=3; e4�i=3Þ. We find no evidence for a quantized

boundary current equal to 2e�=h, as previously suggested
[14]. In fact, we find a nonlinear relationship between the
current and �, a strong variation with doping level, and,
most importantly, the armchair current even decreases
when � increases. The last result can be understood by
studying the zero-energy crossing �k0 of the chiral edge
modes. For the zigzag edge k0 increases with increasing�,
whereas for the armchair edge k0 decreases. In general, we

find that changes in current are proportional to �k	0 with

	 � 1� 2. This, at least, partially agrees with earlier
results reporting a 	 ¼ 2 dependence [12]. Finite k-point
sampling and neglecting the screening supercurrents could
potentially explain the discrepancy.
Majorana mode.—Heavy doping of graphene, by either

adatom deposition [2] or gating [3], breaks the z ! �z
mirror symmetry and introduces a Rashba spin-orbit
coupling [20]:

H
 ¼ i
R

X

hi;ji;�;�0
ẑ �ðs�;�0 � d̂ijÞcyi�cj�0 ; (3)

where d̂ij is the unit vector from site j to i.

Superconducting two-dimensional systems with Rashba
spin-orbit coupling and magnetic field have recently
attracted much attention due to the possibility of creating
Majorana fermions at vortex cores or edges [21–23]. At
edges the Majorana fermion appears as a single mode
crossing the bulk gap. This should be contrasted with the
behavior found above, where the edge instead hosts two
modes. We will here show that a Majorana mode is created
in d-wave superconducting doped graphene in the presence

a moderate Zeeman field: Hh ¼ �hz
P

iðcyi"ci" � cyi#ci#Þ.
Because of spin mixing in H
, the basis vector Xy ¼
ðcyi"cyi#ci"ci#Þ has to be used when expressing the

Hamiltonian Hext ¼ H0 þH� þH
 þHh in matrix
form: Hext ¼ 1

2X
yH extX. This results in a doubling of

the number of eigenstates compared to the physical band
structure. This doubling is necessary for the appearance of
the Majorana fermion, since a regular fermion consists of
two Majorana fermions.
A change in the number of edge modes marks a topo-

logical phase transition which, in general, can occur only
when the bulk energy gap closes. We therefore start by
identify the conditions for bulk zero energy solutions of
Hext. Close to the VHS we can, to a first approximation, use
only the partially occupied � band for small �, 
R, and hz.
A straightforward calculation [23] for this one-band
Hamiltonian gives the following bulk-gap closing condi-
tions at �� t:

ð�� tj�kjÞ2 þ �2
k ¼ h2z þ 
2

RjLkj2;
j�kjj
RLkj ¼ 0;

(4)

where �k ¼ P
�e

ik�� is the band structure, ’k ¼ argð�kÞ,
�k ¼ �P

��� cosðk�� � ’kÞ is the k-dependent intra-
band superconducting order for NN pairing [7],

FIG. 3 (color online). (a) Band structure for a zigzag edge slab
with NN J ¼ 0:75t, � ¼ t, and self-consistent � (thick black
line), constant d1 þ id2 state corresponding to the bulk state
(thin black line), and constant d1 state corresponding in ampli-
tude to the d1 state at the surface. (b) LDOS across the ribbon for
the self-consistent solution in (a) interpolating between 0.2
(black) to 0 (white) states/(eV unit cell), showing a bulk gap
of 0.18 eVand gapless edge states. (c) Quasiparticle edge current
in units of e=h as a function of superconducting bulk order
parameter �ð1; e2�i=3; e4�i=3) for the zigzag edge with � ¼ t
(black cross) and � ¼ 0:8t (red circle) and the armchair edge
with � ¼ t (green upward triangle).
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and Lk ¼ Im½e�i’kð�
ffiffi
3

p
2 eik�2 þ

ffiffi
3

p
2 eik�3 ; eik�1 � 1

2 e
ik�2 �

1
2 e

ik�3 ; 0Þ� is the spin-orbit interaction when expressed in

the form H
 ¼ P
k��0
RLk � s��0cyk�ck�0 for the one-band

model. Equations (4) are met at �, K, and M in the
Brillouin zone, where they produce the conditions
ð�� 3tÞ2 ¼ h2z , �2 ¼ h2z , and ð�� tÞ2 þ �2

kðMÞ ¼ h2z ,
respectively. At �� t only the last condition is satisfied
for small hz, which is necessary for superconductivity to

survive. We find �kðMÞ ¼ 2� for the �ð1; e2�i=3; e4�i=3Þ
order parameter, and, thus, at the VHS there is a topologi-
cal phase transition at hc ¼ 2�. Figure 4(a) shows how the
eigenvalue spectrum of a superconducting zigzag slab at
the VHS develops when hz is swept past hc. At finite 
R

and/or hz the chiral modes in Fig. 3(a) split with one mode
moving towards ky ¼ 0 and the other one towards the zone

boundary at ky ¼ �; see the leftmost figure in Fig. 4(a). At

hc (center figure) the bulk gap closes at both ky ¼ 0, �.

The closure at ky ¼ � annihilates the outer chiral modes,

whereas the closure at ky ¼ 0 leaves a new Dirac cone

crossing the bulk band gap with the two modes belonging
to different edges. Thus, at hz > hc we are left with three
modes per edge crossing the bulk gap. The odd number
establishes the existence of a Majorana mode alongside the
two remnant chiral modes. Figure 4(b) shows how �
develops in the presence of an applied Zeeman field hz,
with �-symbols marking the phase transition into the
phase with a Majorana fermion. The dotted line marks
the one-band result hc ¼ 2�, which is a good approxima-
tion for small 
R. In this small 
R regime, there is a very
pronounced drop in � at the phase transition with only a
small remnant superconducting state in theMajorana phase
at hz > hc, which results in a poorly resolved Majorana

mode. Larger 
R gives a stronger superconducting state
in the Majorana phase. However, for 
R > 0:2t we find
hc > 2�, and the superconducting state is again very weak
beyond the phase transition. We thus conclude that, in
order to create a Majorana fermion at the edge of d-wave
superconducting graphene doped very close to the VHS, a
small to moderate Rashba spin-orbit coupling, 
R � 0:2t,
and a Zeeman field of the order of 2� are needed. With
reported tunability with electric field [24], as well as
impurity-induced Rashba spin-orbit coupling [25], 
R�
0:2t is likely within experimental reach in heavily doped
graphene. The Zeeman field can be generated by proximity
to a ferromagnetic insulator, whereas, if applying an ex-
ternal magnetic field, orbital effects also need to be taken
into account. Finally, in Fig. 4(c), we plot the spatial profile
of the Majorana mode amplitude just beyond hc. Because
of the larger � at the edge, the bulk enters the Majorana-
supporting topological phase before the edge. Therefore,
the Majorana mode does not appear at the edge but is
spread throughout the sample for hz * hc. Not until hz >
2�ðedgeÞ does the Majorana mode appear as a pure edge
excitation.
In summary, we have shown that the d1 þ id2 super-

conducting state in heavily doped graphene is in a pure d1
state on any edge. The d1 edge state significantly modifies
the superconducting state even in macroscopic graphene
samples due to a long decay length. Moreover, d1 þ id2
superconducting graphene hosts two well-localized chiral
edge modes, which carry a nonquantized spontaneous
quasiparticle current. AMajorana mode can also be created
at the edge by tuning a moderate Zeeman field. These
results establish the properties of the d1 þ id2 state in
graphene and will be important for any experimental de-
tection of this state.
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