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Systems with strong spin-orbit coupling, which competes with other interactions and energy scales,

offer a fertile playground to explore new correlated phases of matter. Weyl semimetals are an example

where the phenomenon leads to a low-energy effective theory in terms of massless linearly dispersing

fermions in three dimensions. In the absence of interactions chirality is a conserved quantum number,

protecting the semimetallic physics against perturbations that are translationally invariant. In this Letter

we show that the interplay between interaction and topology yields a novel chiral excitonic insulator. The

state is characterized by a complex vectorial order parameter leading to a gapping out of the Weyl nodes.

A striking feature is that it is ferromagnetic, with the phase of the order parameter determining the

direction of the induced magnetic moment.
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The emergence of materials whose properties
are strongly influenced by spin-orbit coupling is an excit-
ing new phenomenon in condensed matter physics.
Topological insulators [1,2] and Weyl semimetals [3–6]
are two canonical examples, where the degrees of freedom,
describing the low-energy physics of a nonrelativistic
many body system, are linearly dispersing massless fermi-
ons. An interesting possibility in these materials is the
emergence of new phases of matter [7,8]. In this Letter
we focus on the charge density wave (CDW) and excitonic
insulating (EI) states in Weyl semimetals.

In three dimensions touching of nondegenrate bands is
known to be stable. The dispersion near theses points is
linear in momentum and the excitations satisfy the Weyl
equation, a two component analog of the Dirac equation.
Each node has a specific chirality, and a gapping of the
nodes is possible only if nodes of opposite chirality hy-
bridize. In other words, intranodal interactions cannot open
a gap. This is in sharp contrast with graphene, a two-
dimensional systems with nodes in the dispersion, where
intranodal perturbation that breaks inversion or time rever-
sal symmetry makes the excitations massive. The existence
of Weyl points is responsible for new phenomena, such as
large magnetoconductivity, the Adler-Bell-Jackiw anom-
aly, and anomalous Hall effect [4,8–11].

For Weyl semimetals to be realized the bands need to be
nondegenerate. This is typically achieved by the breaking
of time reversal symmetry. In real materials the Weyl
points always occur in pairs with opposite chirality [9]. If

inversion is also preserved, every Weyl node at ~K is

accompanied by one with opposite chirality at � ~K. The
key is to find or identify systems where such nodes exist.
Several candidates have emerged over the past two years.
Weyl fermions are conjectured to be the low-energy exci-
tations of pyrochlore irradiates (PIs) [3], topological nor-
mal insulator (TNI) heterostructures [4,5], and staggered
flux states in a cold atom system [6]. While the physics of

Weyl fermions has been extensively studied in the context
of liquid 3He [12,13], where they arise in the A phase, the
recent developments have renewed searches for other sys-
tems that realize the phenomena [14].
The number of Weyl nodes varies from system to sys-

tem. In the case of PIs, 24 nodes at symmetry related points
are conjectured to exist [3] while the TNI heterostructures
have two such nodes [4]. In both cases there is perfect
nesting. Consequently, we seek to address the question of
the possible particle-hole instabilities promoted by repul-
sive interactions. Even for local density density interac-
tions, the chiral nature of the Weyl fermions leads to a
number of different phases, only one of which opens a gap
at the nodes. Before we explore the energetics of the
possible phases, we summarize the physics of this gapped
state.
To highlight the physics of the novel new state, we

simplify to the case of two Weyl nodes and local density
density interactions. A more general analysis including the
effects of long-range Coulomb will be reported elsewhere.
There are two types of particle-hole excitations that can
arise in this case: (i) intranodal (occurring at zero momen-
tum) and (ii) internodal (occurring at a finite fixed momen-
tum associated with the nesting vector). These are
excitonic phases [15], the former being the EI while the
latter is the CDW. Unlike conventional condensates in
these sectors, the electron hole pairing of Weyl fermions
leads to chiral phases. A minimum interaction strength is
required to nucleate them, which is the consequence of the
vanishing density of states at the node. For local interac-
tions, the chiral EI has the lowest threshold, opens a gap
at the nodes, and is the most stable state. The sign of the
gap is opposite at the two nodes, preserving inversion
symmetry.
To characterize the broken symmetry state we define an

orthonormal basis for three dimensional space fl̂; m̂; n̂g. In
particular, for the Cartesian coordinate system with ẑ as the
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quantization axis, the ordered state is one with

hP ~kê
2
~k
ðcLy~k;þcL~k;��cRy~k;þc

R
~k;�Þi¼�ðx̂�{ŷffiffi

2
p Þexpð{�Þ, where cL;R~k;�

is the fermion annihilation operator at the two Weyl nodes,

labeled L and R, at momentum ~k in the band labeled �,

ê2~k ¼ f�k̂y=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̂2x þ k̂2y

q
; k̂x=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̂2x þ k̂2y

q
; 0g, � is the magni-

tude, and � is the phase of the order parameter. The loss
of rotational invariance is reflected in the vector ê2~k

appear-

ing in the order parameter. In general it is a vector lying in

the plane spanned by l̂ and m̂ (i.e., ê2~k
¼ n̂� k̂=jn̂� k̂j,

with n̂ ¼ l̂� m̂), and the corresponding order parameter is

�ðl̂�{m̂ffiffi
2

p Þ expð{�Þ. Thus the order parameter breaks SOð3Þ �
SOð3Þ � Uð1Þ symmetry corresponding to spatial rota-

tional (choice of the coordinates system fl̂; m̂; n̂g), internal
rotational (choice of ê2~k), and phase invariance (�). This is

in addition to the time reversal symmetry broken by the
parent state.

The order parameter does not break inversion symmetry.
Therefore the spin orientations for electrons at momentum
~k and � ~k are identical. The effect of the symmetry break-
ing is to cant spins in momentum space along a direction
determined by the phase of the order parameter. Thus,
vortex lines, if stabilized, in this system have an associated
spin texture with finite divergence.

Model.—Consider a system with two Weyl nodes at
~K0 ¼ K0x̂ (labeled R) and � ~K0 ¼ �K0x̂ (labeled L)
with chiralities þ1 and �1, respectively. The

Hamiltonian is H0� ¼ �@v
P

~kc
y
~k�
~��� � ð ~k� ~K0Þc ~k�,

where v is the Fermi velocity and ~� ¼ f�x; �y; �zg is a

vector of Pauli matrices. The dispersion at each node is

� ~q ¼ �@vj ~qj centered around � ~K0, with ~q ¼ ð ~k� ~K0Þ.
The conduction (valence) band at the R node has its spin
parallel (antiparallel) to ~q, while the opposite is true at the
L node. The general particle-particle interaction, in mo-
mentum space, takes the form

V ¼ X

�;�0

X

~k; ~k0; ~q

Vð ~qÞc y
~k0þ ~q;�0c ~k0;�0c

y
~k� ~q;�

c ~k;�: (1)

For the moment we do not make any assumptions on the
nature of the interactions. Since the Weyl physics is the
low-energy description of a more general theory, we
enforce an upper cutoff in the momentum integrals (up to
an energy �) around the Weyl point.

Particle-hole instabilities.—We rewrite the interaction

in the basis of the noninteracting bands. Define c R;L
~q;� ¼

�R;L
~q;�c

R;L
~q;� as the fermionic field of the four bands, where �

is the spinor and c is the fermion annihilation operator. Of
the 16 possible terms from Eq. (1) only six terms satisfy
momentum conservation for scattering restricted to the
states within the cutoff around the node. For every mo-
mentum ~q ¼ qq̂, where q̂ ¼ fq̂x; q̂y; q̂zg is the unit vector

along ~q, we define two orthogonal vectors ê1~q � �̂ ~q ¼
fq̂xq̂z=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂2x þ q̂2y

q
; q̂yq̂z=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂2x þ q̂2y

q
;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂2x þ q̂2y

q
g and ê2~q �

�̂ ~q ¼ f�q̂y=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂2x þ q̂2y

q
; q̂x=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂2x þ q̂2y

q
; 0g, such that q̂, ê1~q,

and ê2~q form a right-handed coordinate system (see

Fig. 1). The unit sphere is spanned by the vector q̂ by
two rotations, one about any axis perpendicular to ê2~q and

the another about ê2~q. Construction above holds for an

arbitrary quantization axis n̂, with the corresponding polar
and azimuthal angle for ~q defined in the coordinate frame

fl̂; m̂; n̂g. In the rest of the Letter we use the fx̂; ŷ; ẑg
coordinate system.
Specializing to potentials that are even functions

of ~k, i.e., Vð ~kÞ ¼ Vð� ~kÞ, the interaction in terms of
ê ~k ¼ ê1~k

þ {ê2~k
is

V ¼ � X

~k; ~k0;n¼�

�
Vð ~k� ~k0Þ

4
ðê ~k � ê�~k0 þ ê�~k � ê ~k0 Þ

� X

	¼R;L

c	y~k;nc
	
~k;�n

c	y~k0;�n
c	~k0;n

þ Vð ~k� ~k0 � 2 ~K0Þ
2

� ðê ~k � ê ~k0 þ ê�~k � ê�~k0 Þc
Ly
~k;n
cL~k;�n

cRy~k0;�n
cR~k0;n

� ½2Vð2 ~K0Þ � Vð ~k� ~k0Þðk̂ � k̂0 þ 1Þ�
� cLy~k;nc

R
~k;�n

cRy~k0;�n
cL~k0;n

�

: (2)

The first and second term promote intranodal order

with hP ~k
~A ~kc

	y
~k;n
c	~k;�n

i � 0 ( ~A ~k is an odd function of ~k),

while the last term leads to internodal order with

hP ~k
~A ~kc

	y
~k;n
c �	
~k;�n

i � 0. In the rest of this Letter we analyze

the possible symmetry broken states. These are dictated by

the fact that (i) ~A ~k is one of three possible vectors

fq̂; ê1~q; ê2~qg, (ii) rotational invariance is broken, and

(iii) the state is either polar or chiral in nature. These
lead to eight possible candidates summarized in Table I.

x

y

z

q

eq
1

eq
2

FIG. 1 (color online). The interaction shown in Eq. (2) is a
function of three vectors (q̂, ê1~q, and ê2~q) that form a right-handed

coordinate system. Each vector couples to an operator of distinct
symmetry in the particle-hole channel.
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Internodal charge density wave.—We begin by studying

the internodal instability that establishes ordering at 2 ~K0

[third term in Eq. (2)]. For momentum independent inter-

action potentials, Vð ~kÞ ¼ g=�, where � is the volume of
the system, the coupling takes the form

Veff ¼ � g

�

X

~k; ~k0

X

n¼�
ðk̂cLy~k;ncR~k;�n

Þ � ðk̂0cRy~k0;�n
cL~k0;n

Þ: (3)

Equation (3) is identical to that of the interaction in 3He in
the particle-particle channel that leads to chiral superflu-
idity [12,13]. In Weyl semimetals the corresponding state
in the particle-hole channel is a CDW. Within mean field

there are two possible instabilities: (i) chiral CDW, ~�c ¼
g
� hP ~k0 k̂

0c	y~k0;nc
�	
~k0;�n

i ¼ �cðx̂þ{ŷffiffi
2

p Þ, and (ii) polar CDW,

~�p ¼ g
� hP ~k0 k̂

0c	y~k0;nc
�	
~k0;�n

i ¼ �pẑ. Note that the directions

chosen for the ground state are for convenience and all
others that are obtained by rotation in three dimensions are
equivalent. The former is a chiral state while the latter is a
nonchiral p-wave CDW.

In Fig. 2 the zero temperature free-energy difference
between condensate and normal states, denoted as Ec or
condensation energy in the figure, and magnitude of the
order parameter of the two states are plotted as a function

of the interaction strength (details are available in the
Supplemental Material). The two states have the same
instability threshold. The magnitude of the order parameter
is larger for the chiral state as compared to the polar state
for the same interaction strength, leading to a greater (more
negative) condensation energy for the former. Thus in this
sector the lowest energy state is the chiral CDW.

The dispersion in the symmetry broken state is E~k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@vj ~kjÞ2 þ j ~�c=p � k̂j2

q
. The energy vanishes at the nodes

and the Weyl points are preserved. This is remarkable
given the fact that the interaction does mix the states of
opposite chirality and is the result of the vectorial nature of
the coupling. The gapped CDW is a possible state for

repulsive interactions only when 2Vð2 ~K0Þ< Vð ~qÞ for
small ~q, which is not the case for local interactions.
Intranodal excitonic insulator.—Having established the

instabilities in the internodal sector, we turn to those
promoted by the first two terms in Eq. (2). For Vð ~qÞ ¼
g
� , we get

V ¼ � g

2�

X

~k; ~k0
ð ~�1�

~k � ~�
1
~k0 þ ~�

2�
~k � ~�

2
~k0 Þ; (4)

with ~�
1
~k¼ ê1~k

ðcLy~k;þcL~k;�þcRy~k;þc
R
~k;�Þ and ~�

2
~k ¼ ê2~k

ðcLy~k;þcL~k;��
cRy~k;þc

R
~k;�Þ. Since ê1~k

only spans the southern hemisphere,

azimuthal symmetry is preserved only about the ẑ axes.
This implies that there are four possible particle-hole
instabilities for order parameters with the ê1~k

component:

(i) chiral z EI, ~�
L
cz1 þ ~�

R
cz1 ¼ g

2� hP ~kê
1
~k
ðcLy~k;�n

cL~k;n
þ

cRy~k;�n
cR~k;n

Þi ¼ ð�L
cz1 þ �R

cz1Þðx̂þiŷffiffi
2

p Þ, (ii) polar z EI, ð�L
pz1 þ

�R
pz1Þẑ, (iii) polar x EI, ð�L

px1 þ �R
px1Þx̂, and (iv) chiral

x EI, ð�L
cx1 þ �R

cx1Þðŷþiẑffiffi
2

p Þ. For g > 3ð@vÞ3=2
�2 there

exists polar z EI which has the largest gap for the same
interaction strength among these four states. At zero tem-

perature we get �pz1 > �cx1 >�cz1 >�px1 and Epz1
c <

Ecx1
c < Ecz1

c < Epx1
c for the same interaction strength g

larger than 6ð@vÞ3=
�2 as shown in Fig. 3. By comparing
it with Fig. 2 we see the polar z EI and the chiral CDWare
equally energetically favorable among the six possible
states aforementioned for a given interaction strength.
None of these phases gap out the Weyl node.
For the order parameter of the particle-hole instabilities

along the ê2~k
component, the order parameters have differ-

ent signs between the two Dirac nodes and there are
two possible EI states based on symmetry (no z component

in ê2~k
): (i) chiral EI, ~�

L � ~�
R ¼ g

2� hP ~kê
2
~k
ðcLy~k;�n

cL~k;n
�

cRy~k;�n
cR~k;n

Þi ¼ ð�L
c2 þ�R

c2Þðx̂þiŷffiffi
2

p Þ with the signs fixed by

setting �R
c2 ¼ �L

c2 � �c2=2> 0 under the assumption of
inversion symmetry, and (ii) polar EI, (�L

a2 þ�R
a2Þx̂ with

the same sign convention. For g > ð@vÞ3=
�2 there exists
a chiral EI instability with a uniform gap. From Fig. 4 we

TABLE I. Possible excitonic phases, their symmetries,
whether they gap out the Weyl node or not and the critical
coupling gc in units of ð@vÞ3=2
�2. Some gc are evaluated
analytically while others are obtained numerically. See
Supplemental Material [16] for the details.

~Ak̂ State h ~Aki / Spectrum gc

k̂ Chiral x̂þ iŷ Gapless 3

Polar ẑ Gapless 3

ê1~k
Chiral z x̂þ iŷ Gapless 6

Polar z ẑ Gapless 3

Polar x x̂ Gapless 12

Chiral x ŷþ iẑ Gapless 4.8

ê2k Polar x̂ Gapless 4

Chiral x̂þ iŷ Gapped 2
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FIG. 2 (color online). Left: Order parameter magnitude as a
function of inverse of the interaction strength for chiral (blue 	)
and polar (purple h) CDW states. Right: Comparison of con-
densate energy Ec with � ¼ 0 for aforementioned states as a
function of the interaction strength.
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see this state has the largest gap value compared with all
other state for a given interaction strength. The chiral
EI state is also more energetically favorable at zero tem-
perature compared with the chiral CDW or polar z EI. For
local repulsive interactions, the intranodal chiral excitonic
insulator has the lowest critical coupling constant, opens a
gap at the Weyl nodes, and has the lowest free-energy.

Ferromagnetism.—The chiral EI states mix particle and
hole states which have opposite spin orientations in the
noninteracting limit. Thus the ground state no longer has
the spins aligned with their momenta. To evaluate the
nature of the spin configuration we compute the expecta-

tion value of spin at momenta ~k for the occupied band. The
result is that there exists a net polarization at each Weyl
node. To understand the origin of this effect we first rotate
the mean-field Hamiltonian back to the c ~k;� basis. It takes

the form

H� ¼ H0� �X

~k

c y
~k�
~�
0 � ½ê2~kê2~k � ðê2~k � ~nÞê1~k� � ~���c ~k�;

where ~�
0 ¼ ~� sinð�Þl̂þ ~� cosð�Þm̂, ~� is j ~�c2 � ê2~kj, and �

is the corresponding phase. Under inversion ê1~k
does not

change sign but ê2~k
does. Since we also go from one Weyl

node to the other under inversion, the Hamiltonian pre-
serves the symmetry. Averaging over polar and azimuthal

angle the Hamiltonian is ~�
0 � ~�=2 at both nodes. This is the

origin of the magnetization in the chiral EI state and serves
as a diagnostic of the state. An external magnetic field
couples linearly to the order parameter leading to a low-
ering of the critical coupling, provided that it is smaller
than the magnitude of the gap and no Landau levels are
formed.
Discussion.—Our analysis focused on systems with two

Weyl nodes. The TNI heterostructures [4] offer a simple
realization where one can look for the excitonic phases
reported here. PIs are another system where, in a regime of
intermediate correlations, a Weyl semimetal with 24 nodes
is conjectured to occur [3]. This implies that each Weyl
node can couple to 12 other nodes with opposite chirality.
On the other hand, the available phase space and the cutoff
� will scale down. Whether the parameters end up being
favorable to obtain the state is an open question that can
only be answered once a Weyl semimetallic state is estab-
lished and characterized. Nevertheless, the ongoing efforts
to investigate systems with strong spin-orbit interactions
promises to focus interest on exploring possible new cor-
related phases of matter.
Conclusion.—The interplay of strong spin-orbit cou-

pling and repulsive interaction leads to novel excitonic
phases in Weyl semimetals. The chiral nature of the low-
energy excitations leads to a variety of possibilities, but for
short-range interactions, only one of them opens a gap at
the Weyl nodes. This is a consequence of the vectorial
nature of the order parameter and shares a number of
similarities with the physics of liquid 3He. As such, it
will be interesting to see if a nodal phase is favored over
a fully gapped phase in any part of the phase diagram. Our
chief conclusion is that, for local interactions, the ground
state is a gapped ferromagnetic insulator, with the phase of
the complex order parameter determining the direction of
the ordered moment.
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