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We compute spin transport in the unitary Fermi gas using the strong-coupling Luttinger-Ward theory. In

the quantum degenerate regime the spin diffusivity attains a minimum value of Ds ’ 1:3@=m approaching

the quantum limit of diffusion for a particle of mass m. Conversely, the spin drag rate reaches a maximum

value of �sd ’ 1:2kBTF=@ in terms of the Fermi temperature TF. The frequency-dependent spin

conductivity �sð!Þ exhibits a broad Drude peak, with spectral weight transferred to a universal high-

frequency tail �sð! ! 1Þ ¼ @
1=2C=3�ðm!Þ3=2 proportional to the Tan contact density C. For the spin

susceptibility �sðTÞ we find no downturn in the normal phase.
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The excitation and decay of spin currents plays an
important role in many areas of condensed matter physics,
including the development of electronic devices based on
spin transport. While the Coulomb interaction does not
affect electrical currents in a uniform system [1], it trans-
fers momentum between spin-up and down particles and
thereby dampens the spin current. Understanding the
mechanism of spin drag and spin diffusion quantitatively
is important for an effective control of spin currents;
however, in solids this is often complicated by the presence
of impurities and lattice effects. Ultracold atomic Fermi
gases provide an extremely clean experimental realization
to study the effect of the two-particle interaction alone [2].
If the interactions are short-ranged and the scattering
length is much larger than the particle spacing the results
are universal and apply to a wide range of models, includ-
ing dilute nuclear matter.

The spin diffusivity Ds measures how quickly a spin
current levels out a gradient in the spin density. In a
strongly interacting Fermi gas Ds decreases as the tem-
perature is lowered into the quantum degenerate regime
and reaches a minimum near the Fermi temperature TF,
before increasing again at even lower temperatures in the
superfluid phase. The minimum value of Ds in the strong-
coupling region can be understood qualitatively as a con-
sequence of the uncertainty principle: the mean-free path
in a gas cannot become shorter than the mean particle
spacing in the absence of localization [3], which translates
into a quantum bound Ds * @=m for particles of mass m.
For a strongly interacting Fermi gas of trapped 6Li atoms a
spin diffusivity Ds � 6:3ð3Þ@=m has recently been mea-
sured [4]. Very low spin diffusion is found also in graphene
[5], while spin Coulomb drag in GaAs quantum wells
yields a value of Ds * 500@=m [6].

The determination ofDs near its minimum in the strongly
interacting regime, and more generally the question of

whether quantum mechanics imposes universal lower
bounds on the transport coefficients, is a key challenge in
many-body physics. Recent progress comes from the anti–
de Sitter and conformal field theory correspondence which
maps a strongly coupled field theory to an equivalent weakly
coupled gravitational theory, where calculations are feasible.
It gives a lower quantum bound for the internal friction of
mass flow, expressed as the ratio of shear viscosity to
entropy �=s � @=4�kB, in certain relativistic field theories
[7]. Quantum limited friction, or perfect fluidity [8], has
been found to be almost satisfied in very different physical
situations ranging from quark-gluon plasmas to ultracold
atomic gases [9–11]. It remains an open question whether
a similar bound exists for spin diffusion in nonrelativistic
systems [12].
In this work we present a strong-coupling calculation of

the spin diffusivity Ds in the unitary Fermi gas. At infinite
scattering length it saturates the unitarity bound on the
scattering cross section and is one of the most strongly
interacting systems known; it is also the only known
example of a nonrelativistic interacting scale-invariant
fluid. The unitary gas becomes superfluid below the tran-
sition temperature Tc ’ 0:16TF [13]; here we focus on the
normal phase above Tc where transport experiments are
available and where the most interesting features occur. In
Fig. 1 our result for the diffusivity is shown by the solid red
line, and we find a minimum value of Ds ’ 1:3@=m at a
temperature of about T ¼ 0:5TF. To our knowledge this is
the lowest value achieved to date for a strong two-particle
interaction. Recent experimental data for the trapped
unitary gas [4] are shown as the blue squares (see caption),
and we obtain remarkable agreement for all temperatures
in the normal phase.
In the high-temperature limit where Ds � @=m is much

larger than the quantum limit our calculation agrees with
the predictions of Boltzmann kinetic theory [4,14–16]
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(dashed black line). In the strongly interacting region
near Tc, however, the fermions cease to be well-defined
quasiparticles [17,18] and the Boltzmann theory is not
applicable. Therefore, we employ the strong coupling
Luttinger-Ward theory to compute spin transport. The
Luttinger-Ward (or 2PI) formalism [19,20] is based on
the self-consistent T matrix for repeated particle-particle
scattering and becomes exact at high temperatures. In the
most interesting regime near Tc and unitarity there is no
small parameter to estimate its accuracy. Instead, a com-
parison with experiment shows that it accurately describes
both the normal and the superfluid phase of the BEC-BCS
crossover problem [21]: the values for Tc=TF ¼ 0:16ð1Þ
and the Bertsch parameter � ¼ 0:36ð1Þ agree within error
bounds with precision experimental [13] and diagrammatic
Monte Carlo [22] results. We have devised a framework
which includes all diagrams needed to exactly fulfill the
conservation laws including scale invariance [9] and the
Tan relations [11].

The Luttinger-Ward theory has recently been extended to
compute transport coefficients in linear response using the
Kubo formula: this gives access to the frequency-dependent
shear viscosity of the unitary Fermi gas, which was found
to satisfy the exact viscosity sum rule [9,23].We now extend
this work to the case of spin transport in order to explain the
recent experiment by Sommer et al. [4], and we proceed as
follows: first we compute the frequency-dependent spin
conductivity �sð!Þ of the unitary Fermi gas. The dc value
�s ¼ �sð! ¼ 0Þ determines the spin drag rate �sd ¼
n=m�s at density n, which is the rate of momentum transfer
between atoms of opposite spin. We then compute the spin
susceptibility �s ¼ @ðn" � n#Þ=@ð�" ��#Þ which charac-

terizes the magnetic properties of the system [14,24].
Finally, we determine the spin diffusivity shown in Fig. 1
by the Einstein relation Ds ¼ �s=�s.

The strongly interacting two-component Fermi gas is
described by the grand canonical Hamiltonian

H ¼ X

k;�

ð"k ���Þcyk�ck� þ g0
V

X

k;k0;q
cyk"c

y
k0#ck0�q#ckþq"

where "k ¼ k2=2m (@ � 1) is the free particle dispersion
and�� the chemical potential for the� ¼" , # components.
The s-wave contact interaction g0 acts only between differ-
ent fermion species at low temperatures. The bare interac-
tion is singular in the ultraviolet [2] and needs to be
regularized; the renormalized coupling g ¼ 4�@2a=m
determines the s-wave scattering length a.
The transport coefficients are obtained from the micro-

scopic model via the retarded number-current or spin-
current correlation function

�jn=jsðq; !Þ ¼ i

@

Z 1

0
dt

Z
d3xeið!t�q�xÞ

� h½ðjz" � jz# Þðx; tÞ; ðjz" � jz# Þð0; 0Þ�i: (1)

The spin selective current operators in Fourier representa-

tion are given by j�ðqÞ ¼ V�1
P

kð@k=mÞcyk�q=2;�ckþq=2;�.

The correlation function determines the conductivity

�n=sð!Þ ¼ lim
q!0

Im�jn=jsðq; !Þ
!

(2)

which measures the relaxation of a global number or spin
current at frequency !. The total response integrated over
all frequencies is proportional to the particle density by the
number or spin f-sum rule [25,26]

Z 1

�1
d!

�
�n=sð!Þ ¼ n

m
: (3)

For a momentum-conserving interaction the particle cur-
rent cannot decay and �nð!Þ ¼ �n�ð!Þ=m. In contrast,
scattering transfers momentum between " and # particles so
that the spin current relaxes and �sð!Þ has a nontrivial
structure.
We compute the current correlation function (1) using

field theoretical methods and Feynman diagrams in the
Matsubara formalism [25]. The current operator jz ¼ jz" �
jz# implies a current response vertex J��0 ¼ J0

��0 þ JMT
��0 þ

JAL��0 in the Feynman diagrams which splits into three con-

tributions [9,20] (�,�0 are the spin indices of incoming and
outgoing fermion lines). The first term is the bare number
(spin) current vertex J0

��0nðpÞ ¼ pz�
0
��0 [J0

��0sðpÞ ¼
pz�

3
��0] with the ‘ ¼ 1 partial wave component of the

momentum p and Pauli matrices �j. The other two terms
are current vertex corrections which are required to fulfill
the conservation laws. The Maki-Thompson (MT) contri-
bution describes direct scattering between quasiparticles
while the Aslamazov-Larkin (AL) term captures the in-
duced current of fermion pairs, or molecules (for details
see Ref. [9]). For a mass current both " and # fermions move
in the same direction and induce a current of pairs, leading
to a sizeable AL term. In contrast, for a spin current " and #
atoms move in opposite directions [4] and no pair current is
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FIG. 1 (color online). Spin diffusivity Ds vs reduced tempera-
ture T=TF (solid red line) in the normal phase, T > Tc ’ 0:16TF.
The experimental data [4] (blue squares) for the trapped gas are
rescaled down by a factor of 4.7 to compensate for the effect of
the trapping potential. The dashed black line is the result from
kinetic theory, Ds ¼ 1:1ðT=TFÞ3=2@=m.
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induced. Hence, the Aslamazov-Larkin correction to the
spin current vanishes exactly in the spin balanced case,
JAL��0s ¼ 0, which constitutes an important simplification.

We solve the self-consistent equation for the fully dressed
current vertex J��0 by iteration and obtain the current corre-
lation function (1) via the Kubo formula [9]. Since the
correlation function �jn=jsðq ¼ 0; i!mÞ is evaluated at

discrete imaginary Matsubara frequencies i!m, we must
perform an analytic continuation in order to obtain the
physically relevant correlation function �jn=jsð!Þ for real

frequencies !. We use Padé approximants and find that the
continuation is robust at low temperatures if we vary the
number of Matsubara frequencies, and it yields the correct
high-frequency tail (see below). Specifically, we oversample
theMatsubara data twicewith a spline fit and use the first five
Matsubara frequencies in order to extract the spin drag rate
�sd. We validate our strong coupling calculation by confirm-
ing that �sð!Þ indeed fulfills the spin f-sum rule (3) within
1%. Since we have constructed the formalism to satisfy the
sum rules exactly, this quantifies the numerical accuracy of
our self-consistent solution and the analytical continuation.

Spin conductivity.—The resulting spin conductivity
�sð!Þ is shown in Fig. 2 for reduced temperature T=TF ¼
0:5 where it has the lowest dc value �s ¼ 0:8n=m (red
circles). In a Drude model the conductivity would assume a
form �Drude

s ð!Þ ¼ ðn=mÞ�sd=ð!2 þ �2
sdÞ (solid black line)

with total spectral weight given by the sum rule. The spin
drag rate �sd is a parameter which we determine from the
dc limit �s ¼ n=m�sd of our full numerical solution. We
find that the true �sð!Þ deviates from the Drude model for
! * EF: spectral weight is transferred from the region
! & 8EF to higher frequencies where it forms a power-

law tail �sð! ! 1Þ 	!�3=2 (dotted blue line in Fig. 2).
The high-frequency response generally depends on the

nonuniversal short-distance behavior of the interatomic
potential. However, for a broad Feshbach resonance as in

6Li [2] this potential has a range much shorter than the
particle spacing, kFjrej 
 1, and becomes effectively a
contact interaction. In this case the correlation functions
exhibit universal power-law tails in the high-frequency range
maxðEF; kBTÞ=@ 
 ! 
 @=ðmr2eÞ [27] which depend only
on the Tan contact density C [28]. In the high-frequency
limit the exact transport equations can be solved analytically
in a manner analogous to the viscosity response [9], and we
obtain the universal spin conductivity tail

�sð! ! 1Þ ¼ @
1=2C

3�ðm!Þ3=2 (4)

in agreement with the result from the operator product
expansion [29]. Similar tails appear in other transport prop-
erties such as the viscosity [9,23,29,30]. The value for the
Tan contact density C ¼ 0:0863k4F at T=TF ¼ 0:5 extracted
from the tail of �sð!Þ agrees better than 1% with the value
C ¼ 0:0860k4F from the tail of the momentum distribution
nk 	 Ck�4 [9]. A similar behavior of �sð!Þ is observed for
all temperatures T � Tc.
We now turn to the dc limit and plot the spin drag rate

�sd ¼ n=m�s in Fig. 3 (solid red line). The spin drag has a
maximum value of �sd � 1:2EF=@ in the quantum degen-
erate regime around T=TF ¼ 0:5 and decreases both for
lower and higher temperatures. In the high-temperature
limit of a classical gas the Luttinger-Ward transport equa-
tions can be solved analytically to leading order in

the fugacity [9], and we obtain �sd ¼ ð32 ffiffiffi
2

p
=9�3=2Þ�

ðT=TFÞ�1=2EF=@ ¼ 0:9ðT=TFÞ�1=2EF=@ for T � TF in
agreement with Boltzmann kinetic theory [4,15]. The fact
that the numerical solution at large temperatures agrees
with the analytical result for T � TF is a nontrivial vali-
dation of our analytical continuation procedure.
The measured spin drag rate in a trapped unitary Fermi

gas [4] (blue squares in Fig. 3) has the same qualitative
behavior as our numerical data, with a broad maximum
between T=TF ¼ 0:4; . . . ; 0:8. Note that the absolute spin
drag rate cannot be directly compared to our calculation for
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FIG. 2 (color online). Spin conductivity �sð!Þ (in units of
@n=mEF) vs frequency (red circles) at T ¼ 0:5TF. The Drude
model (solid black line) has the same total spectral weight as
�sð!Þ given by the spin f-sum rule. Part of the spectral weight is
transferred from lower frequencies into a universal high-
frequency tail (dotted blue line) �sð! ! 1Þ ¼ C=3�ðm!Þ3=2
with Tan contact density C ¼ 0:086k4F [9].
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FIG. 3 (color online). Spin drag rate �sd (in units of EF=@) vs
reduced temperature T=TF (solid red line). The experimental
data [4] (blue squares) for a trapped gas are rescaled up by a
factor of 5.3 to compensate for the effect of the trapping
potential. The dashed black line is the result from kinetic theory,
�sd ¼ 0:9ðT=TFÞ�1=2EF=@.
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the uniform system: the solution of the transport equation
depends on the trap geometry and the velocity profiles of
" and # particles in the trap [4,16,31]. For a quadratic

velocity profile in a harmonic trap the spin drag rate �trap
sd ¼

�sd=	 is rescaled by a constant factor 	 ¼ 25=2 in the high-
temperature limit (see supplementary information of
Ref. [4]). In the experiment a factor of 	 ¼ 5:6ð4Þ is found,
and we obtain the best fit at high temperatures for 	 ¼ 5:3.
In the quantum degenerate regime T & TF the assumption
of a uniform quadratic velocity profile breaks down: in the
center of the trap a large spin drag leads to slow spin
motion, while the spins in the weakly interacting wings
move rapidly. The velocity profile thus becomes nonuni-
form and 	 acquires a temperature dependence. In Fig. 3
the calculation for the uniform system and the rescaled
trap-averaged data differ for T & TF, and the scaling factor
starts to deviate from the high-T estimate 	 ¼ 5:3.

Spin susceptibility.—We shall compute and discuss the
spin susceptibility �s in order to find Ds ¼ �s=�s. Both
the spin susceptibility �s ¼ @ðn" � n#Þ=@ð�" ��#Þ and

the normalized compressibility �n ¼ n2
 ¼ @ðn" þ n#Þ=
@ð�" þ�#Þ are obtained from the number or spin correla-

tion function

�n=s ¼ i

@

Z 1

0
dtd3xh½ðn" � n#Þðx; tÞ; ðn" � n#Þð0; 0Þ�i:

The spin-selective particle number operator in Fourier

representation reads n�ðqÞ ¼ V�1
P

kc
y
k�q=2;�ckþq=2;�. In

the Luttinger-Ward formulation the bare number (spin)
density vertex has the form N0

��0n ¼ �0
��0 (N0

��0s ¼ �3
��0).

For the dressed number density vertex Nn both MT and
AL vertex corrections contribute, while the AL term
again vanishes for Ns in the spin balanced case. In order
to obtain the static susceptibility �n=s we calculate the

susceptibility �n=sði!m ¼ 0Þ for zero Matsubara fre-

quency; note that an analytical continuation is not needed
here. The static limit of the related current correlation
function �jn=js ¼ �jn=jsði!m ¼ 0Þ ¼ n=m is fixed by the

exact f-sum rule (3), and our numerical computation ful-
fills this sum rule within 1% (see above). We therefore
expect our results for the static susceptibilities �n=s to be of

the same accuracy.
The susceptibility of the free Fermi gas is �0

n;s ¼ n=kBT
for T � TF (Curie-Weiss) and �0

n;s ¼ �0 ¼ 3n=2EF for

T ! 0 in the Fermi liquid phase (dashed black line in
Fig. 4). In the unitary Fermi gas the attractive interaction
leads to a compressiblity �n twice as large as �0

n in the
quantum degenerate regime near Tc (open magenta
circles), in very good agreement with the experimental
data [4] (full cyan circles) and with a non-self-consistent
diagrammatic approach [32]. Conversely, we find that the
spin susceptibility �s remains below �0

s and exhibits a
maximum of about �s ’ 0:4�0 at T=TF ¼ 0:3 (open red
squares). The spin susceptibility is expected to vanish as

expð�2�=kBTÞ deep in the superfluid phase with gap �,
where an infinitesimal magnetic field gradient cannot break
pairs. The proposed pseudogap scenario [18,32] predicts a
pronounced drop of �s at a pair-breaking scale T� > Tc.
Our data, which fully include the attractive branch, remain
nearly constant down to T=TF ’ 0:2. This indicates that the
scales T� and Tc are very close in the unitary Fermi gas.
The measured �s (full blue squares in Fig. 4) also shows no
downturn and can be described in a Fermi liquid picture
despite the large value for Tc=TF ’ 0:16, in agreement
with a recent quantum Monte Carlo and experimental
study [33]. Note that a finite condensate fraction can lead
to significantly lower values for �s [34].
In the experiment by Sommer et al. [4] �s is determined

from a combination of the local spin density gradient and
the trap-averaged center of mass motion. Hence, the mea-
sured �s deviates at low temperatures from the calculation
of the uniform system (cf. Fig. 4) for similar reasons as
discussed above for �sd. Remarkably, we find that the
differences in �sd and �s cancel and lead to a very good
agreement in the spin diffusivityDs ¼ n=m�sd�s shown in
Fig. 1 above.
In conclusion, our strong coupling calculation of spin

transport explains the behavior of the spin diffusivity Ds

seen in experiment [4], and we find that the diffusivity of
the unitary Fermi gas reaches the quantum limit @=m. This
provides an important constraint for any future spin trans-
port bound from gravity duals [12]. We predict a universal
high-frequency tail of the spin conductivity �sð!Þ which
should be accessible experimentally using Bragg spectros-
copy for the dynamic structure factor [35]. It would be
desirable to have local measurements of transport proper-
ties in a way similar to local precision measurements of the
thermodynamic properties [13] and the momentum distri-
bution [36].
We thank Johannes Hofmann, Mark Ku, Sergej Moroz,

Ariel Sommer, Wilhelm Zwerger, and Martin Zwierlein for
fruitful discussions.
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FIG. 4 (color online). Compressibility �n (circles) and spin
susceptibility �s (squares) vs reduced temperature T=TF. The
experimental data [4] (full symbols) are compared to our
Luttinger-Ward calculation (open symbols). The dashed black
line is the susceptibility of the free Fermi gas.
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