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We measure the time oscillations of a freely evolving standing wave of phonons in a Bose-Einstein

condensate. We present the technique of short Bragg pulses, which stimulates the standing wave. The

subsequent oscillations are observed in situ. The frequency of the oscillations gives the dispersion relation,

the amplitude gives the static structure factor, and the decay gives the dephasing time. The new technique

gives orders of magnitude more sensitivity than Bragg spectroscopy, allowing for the observation of

deviations from the local density approximation. Specifically, it is seen that the phonons undergo a

transition from three dimensions to one dimension, when their wavelength becomes longer than the

transverse radius of the condensate. The one-dimensional regime contains an inflection point in the

dispersion relation, a decrease in the superfluid critical velocity, a minimum in the group velocity, and an

increase in the lifetime of the standing wave oscillations.
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Dispersion is the distortion of a wave packet due to the
different velocities of each frequency component. A direct
measurement of the phonon dispersion relation should
therefore observe the oscillation frequency of the waves.
Before the present work, the oscillation frequency was
determined from a measurement of the energy of the
quasiparticles, in an atomic [1–6] or exciton-polariton
[7,8] condensate. Many of the previous measurements
have employed Bragg spectroscopy [2,3], in which the
condensate absorbs a predetermined momentum. The en-
ergy is adjusted to find the resonance condition, thus
yielding a point on the excitation spectrum [4]. On the
other hand, the energy can be determined by tomographic
imaging [5]. In either case, the results were well described
by the local density approximation (LDA) [2,9]. In this
approximation, each point in the condensate is modeled as
a homogeneous condensate, and a suitable average is taken
over the inhomogeneous density of the actual condensate.
Going beyond the LDA, various radial modes were
resolved [6,10]. The present work introduces an alternative
technique to Bragg spectroscopy, in which phonons are
created with a predetermined momentum, and are allowed
to freely evolve. The oscillation frequency is directly
observed, thus obtaining a point on the dispersion relation.

This new technique is orders of magnitude more sensi-
tive than Bragg spectroscopy. This results from heterodyne
detection, in which the moving atoms composing the pho-
non interfere with the large condensate with population N.

This amplifies the signal by approximately
ffiffiffiffi
N

p
relative to

standard Bragg spectroscopy, in which the quasiparticles
exit the condensate before being measured. An additional
advantage of the new technique is that the frequency is
determined from the zero crossing of the oscillation, rather
than from the center of a broad peak in the Bragg response
function. Furthermore, Bragg spectroscopy becomes

difficult for small wave number k, because the quasi-
particle cloud does not separate sufficiently from the con-
densate cloud in time-of-flight imaging. An analogous
limitation occurs for exciton-polariton condensates [7,8].
In contrast, the phonons are best resolved for small k in our
technique. The k range of our technique is thus comple-
mentary to that of Bragg spectroscopy.
In order to create the phonons, we present the tech-

nique of short Bragg pulses. The pulse employed is
similar to that used in the Kapitza-Dirac effect [11], a
phenomenon involving single particles rather than pho-
nons. Two far-detuned laser beams with a relative angle �
impinge on the condensate for a short time �, as shown in
Fig. 1(a). The photons in the beams have a large energy
uncertainty "�! which is on the order of "=�. This
allows the condensate to absorb a photon from either
beam and emit a photon into the other, creating a phonon
with energy "!k, as long as !k � 1=�. The wave num-
ber k is precisely determined by �. Counterpropagating
phonons with well-defined k are thus produced, resulting
in a standing wave.
During a short Bragg pulse, the energy in the phonons

increases as dE=dt ¼ U2tk2N=2m, where U is the ampli-
tude of the sinusoidal potential resulting from the interfer-
ence between the two laser beams, and m is the atomic
mass [12]. This expression is independent of the frequency
difference between the beams, due to the shortness of the
pulse. Writing the energy in terms of the quasiparticle
number, one obtains Nk ¼ N�k ¼ ðU�="Þ2S0ðkÞN=4,
where S0ðkÞ ¼ "k2=2m!k is the zero-temperature static
structure factor.
After the short Bragg pulse, the phonons freely

propagate in the condensate. The wave function of a
homogeneous condensate in the presence of phonons is
given by [12,13]
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c ¼ ðc o þ �c Þe�ið�="Þt; (1)

where � is the chemical potential, and the small perturba-
tion is given by

�c ¼ X
k

ffiffiffiffiffiffiffi
Nk

V

s
½ukeiðk�r�!ktÞ þ vke

�iðk�r�!ktÞ�;

where V is the volume of the condensate, and uk and vk are
the Bogoliubov amplitudes, which were measured in
Ref. [14]. We find that the density is given by

n ¼ jc j2 ¼ n0

�
1þ 2ffiffiffiffi

N
p X

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NkS0ðkÞ

q
cosðk � r�!ktÞ

�
;

(2)

where n0 is the average density. For the standing wave, the
Fourier transform of the density is given by

�k ¼
�
U�

"

�
NS0ðkÞ sinð!ktÞ: (3)

The standing wave is at a node just after the short Bragg
pulse (t ¼ 0), and we have adjusted the origin in time
accordingly. Thus, by observing the frequency and ampli-
tude of the oscillation of �k, we obtain the dispersion
relation !k, as well as S0ðkÞ.

The sinusoidal potential is created by imaging a spatial
light modulator (SLM) onto the condensate. The SLM is
illuminated by a far-detuned laser (803.5 nm). The image is
filtered in the Fourier plane [15], resulting in two Bragg
beams whose angle can be varied by changing the image
on the SLM. The condensate is composed of 87Rb atoms in
the F ¼ 2, mF ¼ 2 state and is confined in a cylindrically
symmetric harmonic magnetic potential, with radial and
axial frequencies of !?=2� ¼ 224 Hz and !z=2� ¼
26 Hz, respectively. We primarily study a larger conden-
sate with �=h ¼ 2340 Hz, as well as a smaller condensate
with �=h ¼ 1200 Hz. Immediately after the short Bragg
pulse, the density profile is very similar to the unperturbed
condensate shown in Fig. 1(b), and in the integrated profile,
Fig. 1(e). After a time corresponding to one-fourth of a
period, however, the density modulation is at a maximum,
as seen in Fig. 1(c). The densitymodulation disappears again
after half a period, as seen in Fig. 1(d). In Figs. 1(b)–1(e), the
only potential present is the harmonic trapping potential.

Figure 1(f) shows the magnitude squared of the Fourier
transform of the profiles. The asterisk indicates the point
corresponding to the applied k. We plot one phase compo-
nent of this point as a function of time, as shown in
Fig. 1(g). The phase is chosen to be that of the density
modulation near the antinode [the solid black curve of
Fig. 1(f)]. Since this measurement technique employs a
predetermined spatial frequency k and is phase sensitive, it
has the advantages of a lock-in amplifier [16].

The time of the zero crossing in Fig. 1(g) gives �=!k by
Eq. (3). This time is determined by a linear fit to the data in

the region of the zero crossing. Repeating the experiment
for many values of k gives the dispersion relation !k, as
shown in Fig. 2 for both values of�. The error bars are too
small to be seen for most points. Indeed, the errors are an
order of magnitude smaller than the result for Bragg spec-
troscopy [4]. We have also made the perturbation to the
condensate smaller, so the sensitivity improvement is
actually more than an order of magnitude. The black
curves of Fig. 2 are the result of a two-dimensional (2D)
simulation of the Gross-Pitaevskii equation (GPE). This
simulation is cylindrically symmetric with radial and axial
coordinates. The agreement between the measured values
and the simulation is excellent. The lowest measured

FIG. 1 (color). Creating a phonon standing wave by short
Bragg pulses. The larger condensate is shown. (a) Two far-
detuned laser beams, with frequency !L and wave number kL,
impinge on the condensate. Absorption from the left (right)
beam and emission into the right (left) beam results in the
production of a right-moving (left-moving) phonon with wave
number k. The combination of the left- and right-moving pho-
nons results in a standing wave. (b)–(d) Phase-contrast images
of the in situ condensate, for a short 22 �sec Bragg pulse with
k ¼ 2:47 �m�1, where (b) shows the time just before the pulse,
(c) shows the first antinode of the standing wave, at 250 �sec
and (d) shows the second node, at 510 �sec . (e) Integrated
profiles of the images. The top, middle, and bottom curves
correspond to (b), (c), and (d), respectively. The top and middle
curves have been shifted vertically for clarity. (f) The magnitude
squared of the Fourier transform of the profiles. The blue dash-
dotted, black solid, and green dashed curves correspond to
before the pulse, the antinode, and the node, respectively. The
asterisk indicates the k value corresponding to the standing
wave. (g) The time dependence of the Fourier transform of the
standing wave, for k ¼ 0:35 �m�1. The linear fit at the zero
crossing determines !k (solid line). The parabolic fit at the
maximum determines S0ðkÞ (dashed curve).
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frequency is seen to be 80 Hz. Since this is much greater
than the axial trap frequency of 26 Hz, discrete axial modes
can be neglected [17]. Figure 2 also shows the local density
approximation, which agreed well with previous measure-
ments of the excitation energy [2–5].

In Fig. 2 it is seen that both the measured and simulated
dispersion relations are depressed relative to the LDA
curve near k ¼ 1 �m�1. This is particularly visible for
the larger value of�. This is emphasized in the upper inset,
which shows the ratio between the dispersion relations.
The ratio is clearly below unity in this k regime. Here, the
depression in the dispersion relation is below a transition
from three dimensions to one dimension (3D-1D transi-
tion) which occurs when the wavelength becomes longer
than the transverse radius of the condensate. This result can
be understood in terms of the discretization of the modes in
the transverse (radial) direction. The broad LDA frequency
spectrum is actually divided into narrow radial modes
[6,10]. For small k, the LDA linewidth becomes

sufficiently narrow that only a single radial mode is excited
[6], giving the phonons a one-dimensional (1D) character.
Equating the LDA linewidth �!k � 0:6!k (FWHM) [9]
with the spacing between radial modes of approximately
2!? [6,10], a single mode will be excited for

� > 0:9R?; (4)

where � is the phonon wavelength, and R? is the Thomas-
Fermi radius of the condensate perpendicular to the direction
of propagation. The single mode excited in this frequency
regime does not necessarily have the same frequency as the
average over the LDA line shape. Thus, the measured
dispersion relation deviates from the LDA curve. Not
surprisingly, the depression in the dispersion relation can
be seen in simulations of the lowest radial mode [6,10].
The inequality of Eq. (4) is indicated by the arrow in the
upper inset of Fig. 2, which is seen to agree with the regime
of the depression in the dispersion relation. As an addi-
tional verification that the transition is associated with the
transverse degree of freedom, we perform a 1D GPE
simulation of the experiment. We compare the results of
this simulation with a 1D LDA average, as indicated by the
dotted line in the upper inset of Fig. 2. It is seen that the
simulation always agrees with the LDA, since there are no
transverse modes present.
According to the Landau criterion [1], the depression in

the dispersion relation corresponds to a slight decrease in
the superfluid critical velocity. At the depression, !=k ¼
1:91� 0:01 mm sec�1, which is the lowest value for the
entire measured dispersion relation, and thus corresponds
to the critical velocity. For the LDA, !=k is smallest for
k ¼ 0, and takes the value 2:22 mm sec�1. Thus, the criti-
cal velocity is suppressed to 0.9 of its LDAvalue, due to the
1D nature of the phonons. The depression also implies a
minimum in the group velocity vg ¼ d!=dk, as seen in the

lower inset of Fig. 2. In superfluid helium, the minimum in
the group velocity corresponds to a roton [1,18], an exci-
tation whose wavelength is on the order of the effective
hard-sphere radius of the atoms [19]. Here the minimum is
weaker, and the relevant length scale is the transverse
radius of the condensate.
The oscillation amplitude in Fig. 1(g) gives S0ðkÞ by

Eq. (3). This value is determined by a parabolic fit in the
region of the maximum. The result is shown in Fig. 3. The
experimental values in Fig. 3 have been multiplied by a
factor of 1.5, in order to agree with the 2D GPE simulation
for low k. This factor is probably required due to uncer-
tainty in the intensity of the Bragg beams at the location of
the condensate, which affects U in Eq. (3). For small k, the
functional agreement with the simulation is very good. The
uncertainty expressed by the error bars is seen to be an
order of magnitude improvement relative to the Bragg
spectroscopy results in this regime [4]. However, for larger
k, the measured values roll off due to the finite resolution
of the imaging system, which decreases the apparent
values of �k.

FIG. 2 (color). The phonon dispersion relation of a Bose-
Einstein condensate. The filled (open) circles indicate �=h ¼
2340 Hz (1200 Hz). The error bars (which are too small to be
seen for most points) indicate the standard error of the mean. The
black curves indicate the result of the 2D GPE simulation. The
green curves are the LDA approximation. Solid (dashed) curves
correspond to the larger (smaller) value of�. The dotted curve is
the free-particle spectrum !k ¼ "k2=2m. The dash-dotted line
indicates the inverse healing length, the maximum k of the
phonon regime, for the larger value of �. The upper inset shows
the ratio between the dispersion relation and the LDA approxi-
mation for the experiment (filled circles), the 2D GPE simulation
(solid curve), and the 1D GPE simulation (dotted curve), for the
larger value of �. The arrow indicates the 1D regime. The lower
inset shows the group velocity for the experiment (filled circles)
and the 2D GPE simulation (solid curve), for the larger value of
�. The group velocity is computed from the dispersion relation
by a 3-point derivative.
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We now explore the decay of the oscillations, as seen in
Fig. 4(a). The short Bragg pulse (as with any Bragg pulse)
excites several Bogoliubov modes which subsequently
dephase, causing the decay. The filled circles of Fig. 4(b)
show theQ factor of the oscillations, the number of radians
!kt required for the amplitude to decay by 1=

ffiffiffi
e

p
. It is seen

that for long wavelengths,Q increases significantly. This is
in contradiction to the LDA prediction for the decay, which
is due to the dephasing of the oscillations at various loca-
tions in the condensate. For small k, the LDA linewidth
implies a constant Q of 1=0:6, as indicated by the dashed
line in Fig. 4(b). We can make a more precise LDA
prediction by extending the LDA to include the time
dependence of the density. Writing Eq. (2) for the standing
wave, and taking the various quantities to be functions of
position,

nðr; tÞLDA ¼ n0ðrÞ
�
1þ

�
U�

"

�
S0ðr; kÞfsin½kx�!kðrÞt�

� sin½kxþ!kðrÞt�g
�
; (5)

where x is the direction of oscillation of the standing wave,
and we have adjusted the time origin to form a node at
t ¼ 0. By Eq. (5), each point in the condensate oscillates
with a different frequency and amplitude, depending on the
local density. The density profile and its Fourier transform
�k is computed for Eq. (5), yielding the solid curve in
Fig. 4(b). Again it is seen that the measuredQ significantly
exceeds the LDA prediction for small k. The discrepancy
between the measurement and the LDA is due to the 3D-1D
transition. In the 1D regime, the single radial mode has a
much narrower linewidth than the LDA, resulting in larger

Q. This regime is indicated by the arrow in Fig. 4(b). It is
seen that the arrow approximately corresponds to the
region in which the measured values display increased Q.
In conclusion, we have studied the time evolution of

phonons in a Bose-Einstein condensate, thus obtaining the
dispersion relation, the static structure factor, and the
previously inaccessible dephasing time. The phonon stand-
ing wave is stimulated by the novel technique of short
Bragg pulses. The sensitivity of the measurement is more
than an order of magnitude beyond the previous state of the
art. Furthermore, the in situ technique is particularly suit-
able for studying long wavelengths. These advancements
allow for the observation of a 3D-1D transition. In the 1D
regime corresponding to long wavelengths, the phonons
are characterized by a single radial mode. This mode has
a lower frequency and longer lifetime than predicted by
the local density approximation. The 1D regime results in a
decreased superfluid critical velocity, and a minimum in
the group velocity. The 1D nature of the long-wavelength
modes is important for the analysis of sonic black holes
[20–25].
We thank Chris Westbrook and Nadav Katz for helpful
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FIG. 3 (color). The static structure factor. The filled (open)
circles indicate �=h ¼ 2340 Hz (1200 Hz). The error bars
indicate the standard error of the mean. The black curves
indicate the result of the 2D GPE simulation. The green curves
are the LDA approximation. Solid (dashed) curves correspond to
the larger (smaller) value of �. The dash-dotted line indicates
the inverse healing length for the larger value of �.

FIG. 4. The decay of the phonon standing wave. The larger
condensate is shown. (a) The amplitude of the standing wave as a
function of time, for k ¼ 0:35 �m�1. (b) The Q of the oscil-
lation. The error bars reflect the uncertainty due to the finite
number of cycles measured. The solid curve is the LDA result,
by Eq. (5). The dashed line is the LDA result for small k.
The arrow indicates the 1D regime.

PRL 109, 195301 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

9 NOVEMBER 2012

195301-4



[1] Ph. Nozières and D. Pines, The Theory of Quantum
Liquids (Addison-Wesley, Reading, MA, 1990), Vol. II,
Chap. 1–3, 5, and 9.

[2] D.M. Stamper-Kurn, A. P. Chikkatur, A. Görlitz, S. Inouye,
S. Gupta, D. E. Pritchard, and W. Ketterle, Phys. Rev. Lett.
83, 2876 (1999).

[3] J. Stenger, S. Inouye, A. P. Chikkatur, D.M. Stamper-Kurn,
D. E. Pritchard, and W. Ketterle, Phys. Rev. Lett. 82, 4569
(1999).

[4] J. Steinhauer, R. Ozeri, N. Katz, and N. Davidson, Phys.
Rev. Lett. 88, 120407 (2002).

[5] R. Ozeri, J. Steinhauer, N. Katz, and N. Davidson, Phys.
Rev. Lett. 88, 220401 (2002).

[6] J. Steinhauer, N. Katz, R. Ozeri, N. Davidson, C. Tozzo,
and F. Dalfovo, Phys. Rev. Lett. 90, 060404 (2003).

[7] S.Utsunomiya, L. Tian,G.Roumpos,C.W.Lai,N.Kumada,
T. Fujisawa, M. Kuwata-Gonokami, A. Löffler, S. Höfling,
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