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In this Letter, we show through numerical simulations and analytical results that overlapping multiple

(N) laser beams in plasmas can lead to strong stochastic ion heating from many (/ N2) electrostatic

perturbations driven by beat waves between pairs of laser beams. For conditions typical of inertial-

confinement-fusion experiment conditions, hundreds of such beat waves are driven inmm3-scale plasmas,

leading to ion heating rates of several keV=ns. This mechanism saturates cross-beam energy transfer, with

a reduction of linear gains by a factor�4–5 and can strongly modify the overall hydrodynamics evolution

of such laser-plasma systems.
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Experiments on large-scale laser facilities exploring
high-energy-density physics or inertial confinement
fusion (ICF) often require overlapping multiple intense
(> 1014 W=cm2) laser beams in plasmas [1]. This leads
to a wide range of new and complex multibeam laser-
plasma interactions. A particularly important phenomenon
is cross-beam energy transfer (CBET) [2], which was
predicted to play a crucial role for indirect-drive experi-
ments on the National Ignition Facility (NIF) [3] and has
subsequently been used to advantage via laser wavelengths
adjustments to tune the ICF targets’ implosion symmetry
[4–6]. On the other hand, for direct-drive experiments at
the Omega facility, CBET tends to reduce the laser energy
absorbed in the corona by transferring energy from the
incoming light into the refracted outgoing light [7,8]. In
such situations, the overlap of N laser beams generates
NðN � 1Þ=2 individual beat waves whose phase velocities
are fixed (determined by the laser beams’ wavelengths and
directions), and can be near the ion acoustic velocity due to
either small wavelength adjustments as is done on NIF
(cf. Fig. 1), or to sonic flows as in direct-drive or planar foil
experiments [9]. Each beat wave drives an electrostatic
potential via the ponderomotive force. The resulting den-
sity perturbation is driven resonantly if the beat wave’s
phase velocity matches the phase speed of an ion acoustic
wave in the reference frame of the plasma. The scattering
of laser light on these driven fluctuations transfers momen-
tum and energy to the plasma: For each photon scattered
from laser beam n to laser beam m, the momentum and
energy transferred are, respectively, �p ¼ @ðkn � kmÞ
and �U ¼ @ð!n �!mÞ, where !m;n and km;n are the pho-

tons’ frequencies and wave vectors. Thus, overlapping
many of these driven waves can directly affect the laser
energy flux direction and the hydrodynamics evolution.

In this Letter, we show that the interactions of many beat
waves with a plasma lead to strong stochastic heating of the
ions. For typical indirect-drive ICF plasmas [10], we cal-
culate ion-heating rates of several keV=ns. The acoustic

velocity is consequently increased by ’ 50% in less than a
nanosecond; the local hydrodynamics conditions in the
laser beams’ overlap region are thus largely dominated
by the stochastic ion-heating mechanism, which takes
place on time scales shorter than ion heat convection
(due to plasma flow), ion conduction, and electron-ion
temperature equilibration. This can in turn strongly modify
the laser-plasma interaction mechanisms that take place in
such regions, such as CBET. Using a particle code with
binary collisions, we show that weak turbulence from the
beat waves creates an energetic tail in the ion distribution
function over time scales of a few ion bounce periods.
Then, on time scales longer than the ion-ion collision
time, collisions transfer the energy from the hot tail into
the bulk; the distribution recovers a nearly Maxwellian
shape, but with a rapidly increasing temperature and a
change in average (flow) velocity. For NIF conditions,

FIG. 1 (color). Upper half of a NIF hohlraum, where 96 of the
192 NIF laser beams, grouped in 24 quadruplets, overlap in a
mm3-scale plasma at the upper laser entrance hole (the lower
half, not shown, has identical geometry), leading to 276 possible
individual pairs. Each pair of quads (m, n) drives a
beat wave with a phase velocity v�;k ¼ k!k=k

2, where !k ¼
!n �!m and k ¼ kn � km. The beat waves’ v�;k are repre-

sented on the right (green arrows), for a wavelength separation
between inner and outer beams of �� ¼ 2 �A (with �out ¼
351 nm and �inn ¼ 351:2 nm).
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we calculate a reduction of CBET linear gains by a factor
�4–5. The process eventually stabilizes as the ion acoustic
velocity becomes larger than the beat waves’ phase
velocities.

Our numerical model calculates the ion distribution
function fiðr;v; tÞ by integrating equations of motion of
particles in the presence of many beat waves and colli-
sions; the space average of the resulting particle distribu-
tion function is then used to calculate the self-consistent
evolution of the fields. Each beat wave between two lasers
(m, n) with frequencies!m;n and wave vectors km;n creates

a ponderomotive potential �p;k ¼ 1
2 �̂p;k exp½ic k� þ c:c:

oscillating at the beat wave’s phase, c k¼k�r�!ktþ�k,
where !k ¼ !n �!m, k ¼ kn � km, and �k is a random
phase term between 0 and 2� which accounts for the fact
that laser beams on large-scale facilities are optically
smoothed and thus uncorrelated with one another. Beat
waves from two laser beams with different frequencies
(!k � 0) have a finite phase velocity v�;k ¼ k!k=k

2.

The ponderomotive potential acts on the electrons to create
a charge separation which results in an electrostatic poten-

tial �k¼ 1
2�̂k exp½ic k�þc:c: which acts on both the elec-

trons and the ions. The equations of motion for the ions are
integrated with a Runge-Kutta method in the presence of
many of these electrostatic potentials and with ion-ion
collisions, midvi=dt ¼ �qi

P
kr�kðr; tÞ þ �Ci-i, where mi

and qi are the ion mass and charge, and �Ci-i is a binary ion-
ion collision operator based on Ref. [11]. Here, we assume
that the electrons’ response is linear and that their averaged
distribution remains Maxwellian with a constant tempera-
ture. As will be discussed later, only ion-ion collisions will
be significant for ICF-relevant conditions; electron-ion
thermal equilibration rates are typically too slow for the
ions to affect the electron temperature.

The resulting ion distribution function is used to self-
consistently calculate the evolution of the electrostatic
potentials. The main assumption of the model is that these
potentials have spatially uniform, slowly time-varying

envelopes, �̂k ¼ �̂kðtÞ, and follow the time evolution of
the spatially averaged distribution function. Wave-wave
couplings are neglected. In order to calculate the electro-
static potentials, the ion distribution is decomposed into
its spatial average and the responses to the waves,
fiðr;v; tÞ ¼ fi0ðv; tÞ þP

k�fikðr;v; tÞ, where fi0 varies
slowly compared to the fast oscillations of the beat
waves. Poisson’s equation connects each beat wave’s elec-
trostatic potential to the resulting density perturbation:
�r2�k¼4�

P
�

R
d3v�f�k, where � is the particle

specie (¼ e or i). Combining it with the Vlasov equation,
½@t þ v � r � ðq�=m�ÞPkrð�k þ �e��p;kÞ@v�f� ¼ 0,

where ���0 is a Kronecker delta, we get the expression
for the electrostatic potential driven by the ponderomotive

potential: ð1þ �ek þ �ikÞ�̂k ¼ ��ek�̂p;k. For hot ICF

plasmas (� 1 keV), the phase velocities are negligible
compared to the electron thermal velocity, v�;k�vTe,

so the electron susceptibility is �ek ’ 1=ðk�DeÞ2. (Calcu-
lations with electrons showed no changes in their distribu-
tion function; in the following discussion, we will thus
consider only the evolution of the ion distribution.) On
the other hand, the fastest beat waves’ phase velocities are
larger than the ion thermal velocity. The ion susceptibility
evolution follows the space-averaged ion distribution:

�ikðtÞ ¼ 4�q2i
k2mi

Z
k � @fi0ðv; tÞ

@v

d3v

!� k � v : (1)

The amplitudes of the electrostatic potentials thus follow
the slowly varying space-averaged distribution function
fi0, with:

�kðr; tÞ ¼ j�̂p;kj �ek

j1þ �ek þ �ikðtÞj cos½c kðr; tÞ�: (2)

The integration in Eq. (1) is carried out numerically
similarly to Ref. [12]. The ponderomotive potential �p;k

created by two laser beams (m, n) with circular polariza-
tions (or, equivalently, two NIF quadruplets with a ‘‘check-
erboard’’ polarization arrangement, which behave like two
temporally coherent but spatially incoherent beams [6])

crossing at an angle �mn is j�̂p;kj ¼ 1
4 ðmec

2=eÞamanð1þ
cos2�mnÞ1=2, wherea ¼ vosc=c � 0:85ðI18�2

	Þ1=2 is the nor-
malized laser vector potential. (I18 is the laser intensity in
units of 1018 W=cm2 and �	 is its wavelength in microns.)

In the case of two beams with linear and parallel polar-

izations, we have j�̂p;kj ¼ 1
2 ðmec

2=eÞaman.
We present calculations for the entrance hole of a NIF

hohlraum, where 96 laser beams grouped in 24 quadruplets
or ‘‘quads’’ cross, generating 276 beat waves overlapping
in a mm3-scale plasma (cf. Fig. 1). The quads are grouped
in four cones propagating at 23.5� (4 quads), 30� (4 quads),
44.5� (8 quads), and 50� (8 quads) from the hohlraum axis;
the ‘‘inner quads’’ (23.5� and 30�) have an average inten-
sity of 5	 1014 W=cm2, and the ‘‘outer quads’’ (44.5� and
50�) are at 1015 W=cm2. The initial electron and ion
temperatures are 2.8 and 0.8 keV, respectively; the electron
density is 3% of critical; and the plasma is He (Z ¼ 2).
These are typical conditions at the beginning of the main
(‘‘fourth’’) NIF laser pulse. The 128 beat waves between an
inner and an outer quad have a finite phase velocity, set by a
wavelength shift of 2 Å (at �0 ¼ 351 nm) between inner
and outer quads [3,4]. The 148 others, generated by pairs of
quads with similar wavelengths, are stationary in the labo-
ratory frame, v� ¼ 0. The ion-ion collision time is 
ii ’
60 ps. On the other hand, the thermal equilibration time for

the electrons is 
eji ’ 6 ns [13]; this is too slow to be
relevant for our conditions, which is why we consider
only ion-ion collisions in our model.
The evolution of the ion distribution function is shown in

Fig. 2 for typical NIF conditions. The 276 green dots
represent the beat waves’ phase velocities. Because of
the NIF geometry, the problem is axisymmetric around z,
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the hohlraum axis (cf. Fig. 1). The ion distribution is
initially Maxwellian at t ¼ 0. The beat waves that have
their phase velocities near the acoustic velocity cs (cyan
isocontour line) drive the strongest electrostatic
perturbations. Overall, the initial electrostatic potentials’

amplitudes �̂k are in the range ½10�6–10�5�mec
2=e, cor-

responding to density perturbations �n=n � ½10�4–10�3�.
The ion bounce periods 
b are of a few ps.

In the early stages, for times smaller than the collision

time (t 
 
ii ’ 60 ps), some potentials �̂kðtÞ exhibit non-
linear oscillations at 
b due to trapped particles, as
described in Ref. [14]. However, after a few bounce peri-
ods, turbulence starts to dominate, diffusing particles
between multiple overlapping resonances. The nonlinear
oscillations disappear, and an energetic tail starts to
develop in the ion distribution near the velocity of the
fastest beat waves, around 3 to 4 times the initial ion
thermal velocity vTi0, as shown in Fig. 2 at t ¼ 40 ps.
The total kinetic energy of the particles rapidly increases
due to continuous injection of ions into the hot tail.

At later times, for t � 
ii, ion-ion collisions transfer the
energy from the hot tail into the bulk, leading to an increase
in ion temperature. After 200 ps, the bulk of ions has
broadened and reached a thermal velocity close to the
phase velocity of the fastest drivers; the tail that was
present at t ¼ 40 ps is now barely visible. At t ¼ 500 ps,

the distribution resembles a drifting Maxwellian with
hvzi � 0:6vTi0 ¼ 0:85	 107 cm=s.
The thermal energy of the particles and their average

velocity are shown in Figs. 3(a) and 3(b). The ion tempera-
ture increases up to 4 keV in less than a nanosecond, and
the particles acquire a drift hvzi> 107 cm=s due to mo-

mentum deposition [15,16]. The acoustic velocity cs ¼
½ðZkBTe þ 3kBTiÞ=mi�1=2 increases from 4:4	 107 cm=s
to 6:7	 107 cm=s in 1 ns.
Such ion heating rates are in qualitative agreement with

simple estimates based on the conservation of action [17]
during the CBET process, using experimental measure-
ments. Typically, symmetric implosions on NIF for
420 TW shots require transferring 100–150 TW between
laser beams in a ’ mm3-size plasma near the hohlraum’s
laser entrance holes [18]. The power density deposited into
plasma waves is therefore [100–150] TW	 ��=�0 ’ 60
to 120 GW=mm3 for wavelength separations between laser
beams of 2–3 Å (and �0 ¼ 351 nm). Assuming an average
ion density ni ¼ 1:35	 1020 cm�3, and that all the waves’
energy eventually gets converted into heat, we get ion
heating rates of �2–5 keV=ns.
Calculations with an initial flow velocity at t ¼ 0 (i.e.,

where the distribution at t ¼ 0 in Fig. 2 would be centered
around 2vTi0, slightly below Mach 1, as is the case at the
entrance hole of NIF hohlraums) show similar heating rates
and tend to equilibrate at similar averaged velocities, near
the velocity of the fastest beat waves (near 2vTi0 in our
case). Indeed, the flow energy Uflow ¼ 1

2mihvzi2 deposited
in the plasma via momentum deposition remains small
compared to the thermal energy gained by the system
(þ 0:4 keV vs þ3 keV from 0 to 1 ns in our case). Also,
note that, since the volume where all the beams overlap is
of the order of a mm3, the flow (similar to a Mach 1 nozzle
flow near the entrance hole) will replace the ion population
in that volume in 2–3 ns; therefore, calculations on times
scales 
 1 ns should not be affected by changes in back-
ground conditions.

FIG. 2 (color). Ion velocity distribution function log½fiðvÞ�
from our particle code, plotted vs vz and vr (the distribution is
axisymmetric along z) at times t ¼ 0, 40, 200, and 500 ps. The
cyan contour line represents the ion acoustic velocity cs, and the
green dots represent the 276 beat waves’ phase velocities for the
NIF geometry with �� ¼ 2 �A. The initial plasma conditions are
Te ¼ 2:8 keV, Ti ¼ 0:8 keV, ne=nc ¼ 3%, and Z ¼ 2 (He), and
the laser intensities are 5	 1014 and 1015 W=cm2 for the ‘‘in-
ner’’ and ‘‘outer’’ quads, respectively.

FIG. 3 (color). Time evolution of (a) ion temperature
(defined as kBTi ¼ 1

3miðhv2i � hvi2Þ), (b) average velocity, and

(c) average exponential CBET spatial gain for a NIF inner beam.
The black curves are the results from the particle code, and the
dashed red curves are from the quasilinear reduced model.
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The effect of ion heating on CBET is represented in
Fig. 3(c), which shows the average of the spatial gain
exponent over the NIF ‘‘inner quad.’’ The gain �m for a
quad m (such that @za

2
m ¼ �ma

2
m) is defined using the

convective growth formula [4,15],

�m ¼ X24
n¼1

��2
ekImð�ikÞ

j1þ �ek þ �ikj2
k2a2n
16km

½1þ cos2ð�mnÞ�; (3)

where k ¼ kn � km and the summation is taken over the
23 beat waves between the quad m and every other quad
n � m. The gain drops by a factor�4–5, which could help
explain the observed saturation of CBET in both direct-
and indirect-drive experiments, where cumulative amplifi-
cation from multiple laser beams over large scale lengths
allows large gains even in the presence of very low levels
of density fluctuations [7,19,20].

The heating rate eventually drops: The temperature
increases up to the point where the acoustic velocity
reaches the largest beat waves’ phase velocities (soon after
t ¼ 200 ps, per Fig. 2). From then on, the ion acoustic
resonance will be moved further away from the beat
waves’ fixed phase velocities, which will reduce their
coupling to the plasma and thus slow the ion heating.
This also means that the plasma will evolve into a regime
where the electrostatic responses are essentially linear, as
the beat waves’ frequencies are not resonant with ion
acoustic modes anymore.

Since collisions tend to rapidly thermalize the hot ion
tail and restore a Maxwellian shape for the distribution
function, we can derive a reduced model based on the
assumption that the ions are described by a local
Maxwellian with a time-varying temperature and average
velocity. The distribution evolution follows quasilinear
theory [21]: @tf0ðv; tÞ ¼ @v � �D � @vf0ðv; tÞ, with the dif-
fusion operator:

�D ¼ q2i
2m2

i

X
k

j�̂kj2kkIm 1

!k � k � v : (4)

By taking the moments of fi0, one can calculate
the average flow and thermal energy, hvi ¼
n�1
i

R
d3vvfi0ðv; tÞ and kBTi ¼ 1

3miðhv2i � hvi2Þ. Both

are coupled via the time-varying ion susceptibility �i, so
we get the following system of coupled equations:

dhvi
dt

¼ �1

8�mini

X
k

j�̂kj2k2Imð�ikÞk; (5)

dkBTi

dt
¼ 1

12�ni

X
k

j�̂kj2k2ð!k � k � hviÞImð�ikÞ; (6)

�ikðtÞ ¼
�!2

pimi

2k2kBTi

Z0
�
!k � k � hvi
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTi=mi

p
�
; (7)

where Z0 is the plasma dispersion function. Equation (5) is
similar to Ref. [15] if �pk is estimated for the case of laser

beams with the same polarization.

The total energy of the ions Utot ¼ 1
2mihv2i is distrib-

uted between thermal and flow energy, Utot ¼ 3
2 kBTi þ

Uflow, where Uflow ¼ 1
2mihvi2. Note that, for beat waves

produced by lasers with identical frequency, i.e., !k ¼ 0,
there is no net transfer of energy to the plasma since
dUtot=dt ¼ 0 per Eqs. (5) and (6); there is, however, a
redistribution of the total energy of the ions from flow
energy to heat. The implication is that, even for configu-
rations where all the laser beams have the same wave-
length, if beams cross in a flowing plasma, they will not
only exchange energy [9] but will also reduce the plasma
flow and increase the ion temperature.
This reduced model is compared to our particle code in

Fig. 3. Because ion-ion collisions thermalize the distribu-
tion quickly enough, the reduced model reproduces the
code’s result to better than 20% for the temperature, and
to a few % for the momentum. The disagreement for Ti

comes from the fact that the distribution from the particle
code still maintains a slight tail even at later times when
t � 
ii. The agreement is better for the momentum, which
is only the first-order moment of fi0 and is less sensitive
to variations in the detailed shape of the distribution func-
tion. This model could in principle be included in hydro-
dynamics codes, allowing an improved and self-
consistent description of hydrodynamics and laser-plasma
interactions in regions where multiple laser beams
overlap.
In conclusion, we have shown that strong ion heating

can occur when multiple laser beams overlap in plasmas.
The numerous beat waves between pairs of crossing laser
beams drive electrostatic perturbations that transfer energy
and momentum to the ions, leading to stochastic heating
and plasma drift. For typical NIF conditions, the ion tem-
perature increases at rates of several keV=ns, making
stochastic heating a dominant mechanism for the hydro-
dynamics evolution of the plasma in the laser beams’
overlap region, with heating rates being faster than ion
temperature convection and conduction and electron-ion
temperature equilibration. This results in the saturation of
cross-beam energy transfer; linear gain exponents for
NIF’s inner beams drop by a factor �4–5 in a nanosecond
due to the increase in the ion acoustic velocity, which
decouples the beat waves from ion acoustic modes. A
quasilinear model is shown to reproduce the main observ-
ables from the particle code. The heating rate eventually
slows as the electrostatic responses are driven further away
from ion acoustic resonance. The changes in hydrodynam-
ics conditions at the entrance holes of NIF targets from
stochastic ion heating could also affect other laser-plasma
interaction processes occurring in such regions, such as the
reamplification of backscatter light by multiple incoming
laser beams crossing the backscatter wave on its way out of
the target [22]. One could also envision using controlled
CBET to locally heat the plasma and mitigate other laser-
plasma interaction processes.
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