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We present a determination of freeze-out conditions in heavy ion collisions based on ratios of cumulants

of net electric charge fluctuations. These ratios can reliably be calculated in lattice QCD for a wide range

of chemical potential values by using a next-to-leading order Taylor series expansion around the limit of

vanishing baryon, electric charge and strangeness chemical potentials. From a computation of up to fourth

order cumulants and charge correlations we first determine the strangeness and electric charge chemical

potentials that characterize freeze-out conditions in a heavy ion collision and confirm that in the

temperature range 150 MeV � T � 170 MeV the hadron resonance gas model provides good approx-

imations for these parameters that agree with QCD calculations on the 5%–15% level. We then show that a

comparison of lattice QCD results for ratios of up to third order cumulants of electric charge fluctuations

with experimental results allows us to extract the freeze-out baryon chemical potential and the freeze-out

temperature.
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Introduction.—A central goal of experiments at the
Relativistic Heavy Ion Collider (RHIC) [1] is the explora-
tion of the phase diagram of quantum chromodynamics
(QCD) at nonzero temperature (T) and baryon chemical
potential (�B). In particular, a systematic beam energy
scan is being performed at RHIC in order to search for
the QCD critical point that has been postulated to exist in
the T-�B phase diagram of QCD [2,3]. The measurement
of fluctuations of conserved charges, e.g., net baryon num-
ber (B), electric charge (Q), and strangeness (S) [4–6],
plays a crucial role in this search for critical behavior [7]
and the exploration of the QCD phase diagram in general.

Fluctuations of conserved charges may reflect thermal
conditions at the time where the expanding medium, cre-
ated during a heavy ion collision, cooled down and diluted
sufficiently so that hadrons reappear. It may be questioned
whether the thermal medium at this time is in equilibrium
and whether hadronization of all species takes place at the
same time. However, statistical hadronization models,
based on thermal hadron distributions given by the hadron
resonance gas (HRG) model, describe the hadronization
process quite successfully [8]. Moreover, HRG model
calculations of net baryon number fluctuations [9] describe
well experimental data on net proton fluctuations [4]. This
seems to suggest that at the time of freeze-out the system
can be described by thermodynamics characterized by a

temperature Tf and a baryon chemical potential �f
B.

Conserved charge fluctuations can probe critical behav-
ior if these fluctuations are generated at a point, charac-

terized by (Tf, �
f
B), close to the QCD transition line and

eventually also close to the critical point. The freeze-out

points (Tf, �f
B) are usually determined by comparing

experimental hadron multiplicities with HRG model cal-
culations [8,10]. In order to put these parameters on a firm
basis and compare them with the QCD transition line it is
desirable to extract the freeze-out parameters by compar-
ing experimental data with a QCD calculation. This
requires observables which are experimentally accessible
and can also reliably be calculated in QCD. The fluctua-
tions of conserved charges and their higher order cumu-
lants are such observables. Experimentally, net baryon
number fluctuations are accessible only through net proton
number fluctuations [4], inaccessible to lattice QCD
(LQCD). We thus focus on the net electric charge
fluctuations.
We present lattice calculations of ratios formed out of

the first three cumulants, i.e., mean (MX), variance (�2
X),

and skewness (SX) of the net charge distributions X ¼ B,

Q, and S. They can be used to extract (Tf, �
f
B) from

corresponding experimental measurements.
Strangeness and electric charge chemical potentials.—

To access (Tf, �
f
B) we need to fix the electric charge (�Q)

and strangeness (�S) chemical potentials characterizing
the thermal system created during heavy ion collisions.
They are determined assuming the thermal subvolume,
probed by measuring fluctuations in a certain acceptance
window, reflects the net strangeness content and electric
charge to baryon number ratio of the incident nuclei,

MS � 0; MQ ¼ rMB; (1)

where MX ¼ ðVT3Þ�1@ lnZð�; TÞ=@�̂X is the expectation
value of the density of net charge X, � ¼ ð�B;�Q;�SÞ
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summarizes the three charge chemical potentials, and
�̂X � �X=T. At any value of (T, �B) the chemical poten-
tials (�Q,�S) satisfying these constraints can be evaluated

in QCD. We perform Taylor expansions of the densities
MX in terms of the three chemical potentials and calculate
the expansion coefficients of this series using LQCD. This
involves the numerical calculation of generalized suscep-
tibilities (In the following, subscripts and the correspond-
ing superscripts are suppressed in cases where the former is

zero; furthermore the abbreviation �BQS
ijk ¼ �BQS

ijk;�¼0 is

used.) [11]

�BQS
ijk;� ¼ 1

VT3

@iþjþk lnZð�; TÞ
@�̂i

B@�̂
j
Q@�̂

k
S

; (2)

at � ¼ 0. Recent LQCD calculations [12,13] provide con-
tinuum extrapolated results for the susceptibilities needed
to determine (�̂Q, �̂S) to leading order (LO) in �̂B.

Let us write the next-to-leading order (NLO) expansion
of �̂Q and �̂S as �̂Q ¼ q1�̂B þ q3�̂

3
B, �̂S¼ s1�̂Bþs3�̂

3
B.

Expanding the densitiesMX up to third order in the chemi-
cal potentials, we can fulfill the constraints specified in
Eq. (1) at NLO. This provides four equations to determine
the four parameters (s1, s3, q1, q3). In LO, one obtains,

q1 ¼ rð�B
2�

S
2 � �BS

11�
BS
11 Þ � ð�BQ

11 �
S
2 � �BS

11�
QS
11 Þ

ð�Q
2 �

S
2 � �QS

11 �
QS
11 Þ � rð�BQ

11 �
S
2 � �BS

11�
QS
11 Þ

;

s1 ¼ ��BS
11

�S
2

� �QS
11

�S
2

q1:

(3)

The NLO expressions can be derived easily [14]. We
evaluated the LO expressions in the temperature interval
150 MeV � T � 250 MeV for three different values of
the lattice cutoff (a) corresponding to lattices with tempo-
ral extentN� � 1=aT ¼ 6, 8, and 12. All calculations have
been performed within an Oða2Þ improved gauge and

staggered fermion (highly improved staggered quark) dis-
cretization scheme [15] for (2þ 1) flavor QCD using a

strange quark mass tuned to its physical value and the light

to strange quark mass ratio ml=ms ¼ 1=20, leading to a
Goldstone pion mass of about 160 MeV. For LO results we

make use of data obtained by the HotQCD collaboration

[12]. On the 243 � 6 and 323 � 8 lattices we extended
these calculations in the temperature interval 150 MeV �
T � 175 MeV to 30 000 molecular dynamics time units.
In the following, we restrict our discussion to the case

r ¼ 0:4, which approximates well the situations met in

Au-Au as well as Pb-Pb collisions. The LO expansion

coefficients for (�̂Q, �̂S) are shown in the top panels of

Fig. 1, left and middle panels. Using spline interpolations

of results for three different lattice sizes, we performed
continuum extrapolations shown as bands, using an ansatz

linear in 1=N2
�. No statistically significant differences

occur by including an additional 1=N4
� correction.

To check the importance of NLO corrections we have
calculated s3 and q3 on N� ¼ 6 and 8 lattices. As shown in
Fig. 1, NLO corrections are negligible in the high tempera-
ture region and are below 10% in the relevant temperature

interval T ’ ð160� 10Þ MeV. In this temperature range,

leading order LQCD results deviate from HRG model
calculations expanded to the same order by less than

15%. The NLO corrections become smaller than the

HRG model values for T * 160 MeV, further reducing
the importance of NLO corrections. In the HRG model,

the NLO expansion reproduces the full HRG result for
(�̂Q, �̂S) to better than 1.0% for �B=T � 1:3. We thus

expect that the NLO expansion is a good approximation to

the complete results for (�̂Q, �̂S) for �B � 200 MeV.

As our study utilizes the staggered discretization scheme
the biggest systematic effects at nonvanishing lattice

spacing are due to so-called taste violations, giving rise

to a distorted hadron spectrum, but mainly affecting the
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FIG. 1 (color online). The leading and next-to-leading order expansion coefficients of the strangeness (left panel) and the negative of
the electric charge chemical potentials (middle panel) versus temperature for r ¼ 0:4. For s1 and q1 the LO bands show results for
the continuum extrapolation. For s3 and q3 we give an estimate for continuum results (NLO bands) based on spline interpolations
of the N� ¼ 8 data. Dashed lines at low temperature are from the HRG model and at high temperature from a massless, 3-flavor quark
gas. The right hand panel shows NLO results for �S=�B and �Q=�B as a function of �B for three values of the temperature.
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pion sector [12]. Correspondingly, the electric charge
susceptibilities will be most sensitive to discretization
effects while the baryon and strangeness sectors are largely
unaffected. At LO, these discretization effects have been
eliminated by taking the continuum limit. At NLO, taste
violation effects show up in the electric charge sector,
Fig. 1 (middle panel). However, as the corrections them-
selves are already small, we expect their influence to be
small. Furthermore, the taste violations can be modelled
within the HRG model by replacing the pion mass with the
average, root-mean-square pion mass [12]. Results
obtained with such a modified spectrum suggest that taste
violation effects are indeed negligible in the NLO calcu-
lation of �̂S and lead to at most 5% systematic errors in �̂Q

for �B � 200 MeV.
Additional systematic errors arise from the degeneracy of

light quark masses. As a consequence, not all susceptibili-

ties are independent; there are two constraints in LO (�B
2 ¼

2�BQ
11 � �BS

11 , �S
2 ¼ 2�QS

11 � �BS
11 ) and six constraints in

NLO [14]. Imposing these constraints by hand in the
HRG model calculations we find that q1 and q3 can change
by up to 3% while modifications of s1 and s3 are below the
1% level. This suggests that even after extrapolating to the
continuum limit, the current LQCD calculations of�Q=�B

do have an inherent systematic error of about 3%.
Our results for �S and �Q at NLO are shown in Fig. 1

(right panel). While �S=�B varies between 0.2 and 0.3 in
the interval 150 MeV � T � 170 MeV, the absolute value
of�Q=�B is an order of magnitude smaller. Both ratios are

almost constant for �B � 200 MeV, consistent with HRG
model calculations.

Ratios of cumulants of net charge fluctuations.—We now
evaluate cumulants of net charge fluctuations as a function
of T and �B for �S � 0 and �Q � 0 obeying Eq. (1). As

ratios of cumulants, RX
nm ¼ �X

n;�=�
X
m;�, cancel the freeze-

out volume we concentrate on such ratios,

RX
12 �

MX

�2
X

¼ �̂BðRX;1
12 þ RX;3

12 �̂
2
B þOð�̂4

BÞÞ; (4)

RX
31 �

SX�
3
X

MX

¼ RX;0
31 þ RX;2

31 �̂
2
B þOð�̂4

BÞ; (5)

with X ¼ B, Q. These ratios can be calculated in QCD as
well as in the HRG model [7], and eventually can be

compared to experimental data to determine (Tf, �f
B).

We evaluated them up to Oð�̂3
BÞ in a Taylor expansion

for RX
12 and to LO for RX

31.

Using �XX
11 � �X

2 the LO coefficients of the odd-even
ratios RX

12 can be written as

RX;1
12 ¼ �BX

11

�X
2

þ q1
�XQ
11

�X
2

þ s1
�XS
11

�X
2

; (6)

with X ¼ B, Q. They have been evaluated on lattices
with temporal extent N� ¼ 6, 8, and 12 and have been

extrapolated to the continuum limit in the same way as for
q1 and s1, see Fig. 2 (left panel). In Fig. 2 (right panel), we
show the NLO corrections from N� ¼ 6 and 8 lattices.
The NLO corrections are below 10%, making the LO
result a good approximation for a large range of �̂B.
Systematic errors arising from the NLO truncation for

RQ
12 may again be estimated by comparing the full result

in the HRG model calculation with the corresponding
truncated results. For T ¼ ð160� 10Þ MeV and �B=
T � 1:3 we find that the difference is less than 1.0%.
Moreover, we estimated that taste violation effects in the
NLO calculation lead to systematic errors that are at most
5%. Taylor series truncated at NLO are thus expected to
give a good approximation to the full result for a wide
range of �B.
Determination of freeze-out baryon chemical potential

and temperature.—The ratio RQ
12 shows a strong sensitivity

on �B but varies little with T for T ’ ð160� 10Þ MeV.
Figure 3 (left panel) shows this ratio as a function of �̂B up

to NLO corrections. For the determination of (Tf, �
f
B), a

second, complimentary information is needed. To this end,

we use information from the ratio RQ
31, which is strongly

dependent on T but receives corrections only at Oð�̂2
BÞ.

The LO result for this ratio is shown in Fig. 3 (middle
panel). Apparently, this ratio shows a characteristic
temperature dependence for T * 155 MeV that is quite
different from that of HRG model calculations. The NLO

correction to RQ
31 is below 1% in the high temperature free

gas limit. At low T, the HRG model suggests that LO

contributions to RQ
31 differ by less than 2% from the exact

results for �B � 200 MeV. In the transition region a
preliminary 6th order calculation at T ¼ 162 MeV [14]
suggests that the �2

B correction in units of the LO term
is �0:03ð10Þ. Based on these estimates we expect the
NLO corrections to be at most 10% for the whole tempera-
ture range. In Fig. 3 (middle panel) we show the spline
interpolation for the N� ¼ 8 data as a band, and added on
top of this, a band that estimates the effect of a 10%

contribution of the NLO correction. The ratio RQ
31 thus

seems to be well suited for a determination of the freeze-
out temperature Tf.
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FIG. 2 (color online). The leading (left) and next-to-leading
(right panel) order expansion coefficients of the ratio of first to
second order cumulants of net electric charge fluctuations versus
temperature for r ¼ 0:4. The bands and lines are as in Fig. 1 (left
panel).
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We now are in a position to extract �f
B and Tf from RQ

12

and RQ
31 which eventually will be measured in the beam

energy scan at RHIC. A large value for RQ
31, i.e., R

Q
31 ’ 2

would suggest a low freeze-out temperature (Tf &

155 MeV), while a value RQ
31 ’ 1 would suggest a large

freeze-out temperature (Tf � 170 MeV). A value of RQ
31 ’

1:5 would correspond to Tf � 160 MeV. A measurement

of RQ
31 thus suffices to determine Tf. In the HRG model

parametrization of the freeze-out curve [10], the favorite
value for Tf in the beam energy range 200 GeV �
ffiffiffiffiffiffiffiffi

sNN
p � 39 GeV varies by less than 2 MeV and is about

165 MeV. At this temperature the values for RQ
31 calculated

in the HRG model and in QCD differ quite a bit, as is

obvious from Fig. 3. While RQ
31 ’ 2 in the HRG model, one

finds RQ
31 ’ 1:2 in QCD at T ¼ 165 MeV. Values close to

the HRG value are compatible with QCD calculations only
for T & 157 MeV. We thus expect to either find freeze-out
temperatures that are about 5% below HRG model results

or values for RQ
31 that are significantly smaller than the

HRG value. A measurement of this cumulant ratio at RHIC
thus will allow us to determine Tf and probe the consis-

tency with HRG model predictions.
For any of these temperature values a comparison of an

experimental value for RQ
12 with Fig. 3 (left) will allow

us to determine �f
B. To be specific, let us discuss the

results obtained at T ¼ 160 MeV. Here we find:

RQ
12ðT ¼ 160 MeVÞ ¼ 0:102ð5Þ�̂B þ 0:002ð1Þ�̂3

B. For a

value of the freeze-out temperature close to Tf ¼
160 MeV we thus expect to find �f

B ¼ ð20–30Þ MeV, if

RQ
12 lies in the range 0.012–0.020, �f

B ¼ ð50–70Þ MeV

for 0:032 � RQ
12 � 0:045, and �f

B ¼ ð80–120Þ MeV for

0:05 � RQ
12 � 0:08. These parameter ranges are expected

[1,10,16] to cover the regions relevant for RHIC beam
energies

ffiffiffiffiffiffiffiffi

sNN
p ¼ 200, 62.4, and 39 GeV, respectively. As

is evident from Fig. 3 (left panel) the values for �f
B will

shift to smaller (larger) values when Tf turns out to be

larger (smaller) than 160 MeV. A more refined analysis of

(Tf, �
f
B) will become possible, once the ratios RQ

12 and R
Q
31

have been measured experimentally.
Conclusions.—We have shown that the first three cumu-

lants of net electric charge fluctuations are well suited for a
determination of freeze-out parameters in a heavy ion

collision. Although the ratios RQ
12 and RQ

31 are sufficient

to determine Tf and �f
B, it will clearly be advantageous to

have several ratios to probe the consistency of an equilib-
rium thermodynamic description of cumulant ratios at the
time of freeze-out. In particular, the ratio of ratios

RQ
12=R

B
12 ¼ r�B

2;�=�
Q
2;� is also well determined in LQCD

calculations [12]. In Fig. 3 (right panel), we show the NLO
result for this quantity for T ¼ ð160� 10Þ MeV. Its mea-
surement will not only test our basic assumptions on con-
straining the electric charge and strangeness chemical
potentials, but also constrain possible differences in cumu-
lant ratios of net proton and net baryon number fluctua-
tions. Once the ratios of lower order cumulants have been
used to fix the freeze-out parameters, the calculation of
higher order cumulants is parameter free and provides
unique observables for the discussion of possible signa-
tures for critical behavior along the freeze-out line.
While the calculations presented here have been per-

formed using the grand-canonical ensemble approach in
the thermodynamic limit, it is a priori not evident that this
is also applicable to conditions met in a heavy ion collision.
Thus, when comparing our results with experimental ones
it is essential to check that effects of global conservation
laws in finite subsystem sizes [17], experimental accep-
tance cuts [18], or the influence of resonance decays [19]
do not invalidate the grand canonical ensemble approach.
Although many of these questions are being investigated in
recent experimental analyses [19,20], clearly these issues
deserve further detailed considerations.
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